Menu Close

0-pi-sin-x-dx-1-sin-x-




Question Number 90997 by jagoll last updated on 27/Apr/20
∫ _0 ^π  ((sin x dx)/(1+sin x))
π0sinxdx1+sinx
Commented by john santu last updated on 27/Apr/20
Commented by jagoll last updated on 27/Apr/20
thank you
thankyou
Commented by mathmax by abdo last updated on 27/Apr/20
I =∫_0 ^π  ((sinx)/(1+sinx))dx ⇒ I =∫_0 ^π  ((1+sinx−1)/(1+sinx))dx  =π −∫_0 ^π  (dx/(1+sinx))  we have ∫_0 ^π   (dx/(1+sinx)) =_(tan((x/2))=t)  ∫_0 ^∞   ((2dt)/((1+t^2 )(1+((2t)/(1+t^2 )))))  =∫_0 ^∞   ((2dt)/(1+t^2  +2t)) =∫_0 ^∞   ((2dt)/((t+1)^2 )) =−(2/(t+1))]_0 ^∞  =2 ⇒I =π−2
I=0πsinx1+sinxdxI=0π1+sinx11+sinxdx=π0πdx1+sinxwehave0πdx1+sinx=tan(x2)=t02dt(1+t2)(1+2t1+t2)=02dt1+t2+2t=02dt(t+1)2=2t+1]0=2I=π2

Leave a Reply

Your email address will not be published. Required fields are marked *