0-pi-sinx-2n-dx-n-N- Tinku Tara June 4, 2023 None 0 Comments FacebookTweetPin Question Number 144174 by lapache last updated on 22/Jun/21 ∫0π(sinx)2ndx=….?∀n∈N Commented by Willson last updated on 22/Jun/21 4nsin2nt=C2nn+2∑n−1k=0(−1)nC2nn−kcos(2kt)4n∫0πsin2ntdt=πC2nn+2∑n−1k=0(−1)k∫0πcos(2kt)dt⏟0⇒∫0π(sint)2ndt=π(C2nn4n) Answered by Dwaipayan Shikari last updated on 22/Jun/21 ∫0π(sinx)2ndx=∫π2π(sinx)2ndx+∫0π2(sinx)2ndxx=z−π2⇒∫0π2(−sin(π2−z))2n+∫0π2sin2n(x)dx=∫0π2sin2n(z)dz+∫0π2sin2n(x)dx=Dummyvariable2∫0π2sin2n(x)dxNow∫0π2sin2a−1(x)cos2b−1(x)dx=Γ(b)Γ(a)2Γ(b+a)Here2∫0π2sin2n(x)dx=Γ(12)Γ(2n+12)Γ(n+1)=πn!Γ(n+12) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: If-f-x-5-g-2x-1-Find-2f-1-x-A-g-1-x-11-D-g-1-x-2-6-B-g-1-x-9-E-g-1-2x-6-C-g-1-x-6-Next Next post: Find-the-sum-of-the-nth-term-1-6-2-6-3-6-4-6-n-6- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.