Menu Close

0-pi-sinx-2n-dx-n-N-




Question Number 144174 by lapache last updated on 22/Jun/21
∫_0 ^π (sinx)^(2n) dx=....?   ∀n∈N
0π(sinx)2ndx=.?nN
Commented by Willson last updated on 22/Jun/21
4^n sin^(2n) t = C_(2n) ^n +2Σ_(k=0) ^(n−1) (−1)^n C_(2n) ^(n−k) cos(2kt)  4^n ∫^( 𝛑) _( 0) sin^(2n) t dt= 𝛑C_(2n) ^n  +2Σ_(k=0) ^(n−1) (−1)^k ∫^( 𝛑) _0 cos(2kt)dt_(0)    ⇒ ∫^( π) _0 (sint)^(2n) dt= π((C_(2n) ^n /4^n ))
4nsin2nt=C2nn+2n1k=0(1)nC2nnkcos(2kt)4n0πsin2ntdt=πC2nn+2n1k=0(1)k0πcos(2kt)dt00π(sint)2ndt=π(C2nn4n)
Answered by Dwaipayan Shikari last updated on 22/Jun/21
∫_0 ^π (sinx)^(2n) dx=∫_(π/2) ^π (sinx)^(2n) dx+∫_0 ^(π/2) (sinx)^(2n) dx  x=z−(π/2)    ⇒∫_0 ^(π/2) (−sin((π/2)−z))^(2n) +∫_0 ^(π/2) sin^(2n) (x)dx  =∫_0 ^(π/2) sin^(2n) (z)dz+∫_0 ^(π/2) sin^(2n) (x)dx=^(Dummy variable) 2∫_0 ^(π/2) sin^(2n) (x)dx  Now ∫_0 ^(π/2) sin^(2a−1) (x)cos^(2b−1) (x)dx=((Γ(b)Γ(a))/(2Γ(b+a)))  Here 2∫_0 ^(π/2) sin^(2n) (x)dx=((Γ((1/2))Γ(((2n+1)/2)))/(Γ(n+1)))=((√π)/(n!))Γ(n+(1/2))
0π(sinx)2ndx=π2π(sinx)2ndx+0π2(sinx)2ndxx=zπ20π2(sin(π2z))2n+0π2sin2n(x)dx=0π2sin2n(z)dz+0π2sin2n(x)dx=Dummyvariable20π2sin2n(x)dxNow0π2sin2a1(x)cos2b1(x)dx=Γ(b)Γ(a)2Γ(b+a)Here20π2sin2n(x)dx=Γ(12)Γ(2n+12)Γ(n+1)=πn!Γ(n+12)

Leave a Reply

Your email address will not be published. Required fields are marked *