Menu Close

0-pi-x-1-cos-2-x-dx-




Question Number 106932 by Ar Brandon last updated on 07/Aug/20
∫_0 ^π (x/(1+cos^2 x))dx
0πx1+cos2xdx
Answered by mathmax by abdo last updated on 08/Aug/20
I =∫_0 ^π  ((xdx)/(1+cos^2 x))  changement x =π−t give  I =∫_0 ^π  (((π−t)dt)/(1+cos^2 t)) =π ∫_0 ^π  (dt/(1+cos^2 t))−I ⇒2I =π ∫_0 ^π  (dt/(1+cos^2 t))  but we have proved  ∫_0 ^π  (dt/(1+cos^2 t)) =(π/( (√2))) ⇒2I =(π^2 /( (√2))) ⇒I =(π^2 /(2(√2)))
I=0πxdx1+cos2xchangementx=πtgiveI=0π(πt)dt1+cos2t=π0πdt1+cos2tI2I=π0πdt1+cos2tbutwehaveproved0πdt1+cos2t=π22I=π22I=π222
Answered by Dwaipayan Shikari last updated on 08/Aug/20
∫_0 ^π (x/(1+cos^2 x))=∫((π−x)/(1+cos^2 x))=I  2I=∫_0 ^π (π/(1+cos^2 x))  2I=π∫_0 ^π ((sec^2 x)/(sec^2 x+1))  2I=π∫_0 ^π (dt/(t^2 +2))             (tanx=t  2I=(π/( (√2)))[tan^(−1) (((tanx)/( (√2))))]_0 ^π =(π/( (√2))).π=(π^2 /( (√2)))  I=(π^2 /(2(√2)))
0πx1+cos2x=πx1+cos2x=I2I=0ππ1+cos2x2I=π0πsec2xsec2x+12I=π0πdtt2+2(tanx=t2I=π2[tan1(tanx2)]0π=π2.π=π22I=π222
Commented by Ar Brandon last updated on 08/Aug/20
������
Answered by Ar Brandon last updated on 08/Aug/20
J=∫_0 ^π (x/(1+cos^2 x))dx      =∫_0 ^π ((π−x)/(1+cos^2 x))dx=∫_0 ^π (π/(1+cos^2 x))dx−J  2J=∫_0 ^π (π/(1+cos^2 x))dx=π∫_0 ^π ((sec^2 x)/(sec^2 x+1))dx         =π∫_0 ^π ((sec^2 x)/(tan^2 x+2))dx=π∫_0 ^π ((d(tanx))/(tan^2 x+2))dx         =π[(1/( (√2)))Arctan(((tanx)/( (√2))))]_0 ^π          =(π/( (√2)))[Arctan(−(0/( (√2))))−Arctan((0/( (√2))) )]=((π(π−0))/( (√2)))=(π^2 /( (√2)))  J=(π^2 /(2(√2)))
J=0πx1+cos2xdx=0ππx1+cos2xdx=0ππ1+cos2xdxJ2J=0ππ1+cos2xdx=π0πsec2xsec2x+1dx=π0πsec2xtan2x+2dx=π0πd(tanx)tan2x+2dx=π[12Arctan(tanx2)]0π=π2[Arctan(02)Arctan(02)]=π(π0)2=π22J=π222

Leave a Reply

Your email address will not be published. Required fields are marked *