Question Number 106932 by Ar Brandon last updated on 07/Aug/20

Answered by mathmax by abdo last updated on 08/Aug/20

Answered by Dwaipayan Shikari last updated on 08/Aug/20
![∫_0 ^π (x/(1+cos^2 x))=∫((π−x)/(1+cos^2 x))=I 2I=∫_0 ^π (π/(1+cos^2 x)) 2I=π∫_0 ^π ((sec^2 x)/(sec^2 x+1)) 2I=π∫_0 ^π (dt/(t^2 +2)) (tanx=t 2I=(π/( (√2)))[tan^(−1) (((tanx)/( (√2))))]_0 ^π =(π/( (√2))).π=(π^2 /( (√2))) I=(π^2 /(2(√2)))](https://www.tinkutara.com/question/Q106994.png)
Commented by Ar Brandon last updated on 08/Aug/20
������
Answered by Ar Brandon last updated on 08/Aug/20
![J=∫_0 ^π (x/(1+cos^2 x))dx =∫_0 ^π ((π−x)/(1+cos^2 x))dx=∫_0 ^π (π/(1+cos^2 x))dx−J 2J=∫_0 ^π (π/(1+cos^2 x))dx=π∫_0 ^π ((sec^2 x)/(sec^2 x+1))dx =π∫_0 ^π ((sec^2 x)/(tan^2 x+2))dx=π∫_0 ^π ((d(tanx))/(tan^2 x+2))dx =π[(1/( (√2)))Arctan(((tanx)/( (√2))))]_0 ^π =(π/( (√2)))[Arctan(−(0/( (√2))))−Arctan((0/( (√2))) )]=((π(π−0))/( (√2)))=(π^2 /( (√2))) J=(π^2 /(2(√2)))](https://www.tinkutara.com/question/Q106999.png)