Menu Close

0-pi-x-2-1-sinx-dx-




Question Number 162575 by Ar Brandon last updated on 30/Dec/21
∫_0 ^π (x^2 /(1+sinx))dx
0πx21+sinxdx
Answered by phanphuoc last updated on 30/Dec/21
you can put x=pi−t
youcanputx=pit
Answered by mindispower last updated on 30/Dec/21
du=(1/(1+sin(x)))⇒u=((2sin((x/2)))/(sin((x/2))+cos((x/2))))  IBP⇒2π^2 −4∫_0 ^π ((sin((x/2)))/(cos((x/2))+sin((x/2))))xdx  ∫_0 ^π ((sin((x/2)))/(cos((x/2))+sin((x/2))))xdx=4∫_0 ^(π/2) ((sin(y))/(sin(y)+cos(y)))ydy  =2∫_0 ^(π/2) ydy−2∫_0 ^(π/2) ((cos(y)−sin(y))/(sin(y)+cos(y)))ydy  =(π^2 /4)+2∫_0 ^(π/2) ln(sin(y)+cos(y))dy  (π^2 /4)+2∫_0 ^(π/2) ln((√2))+ln(sin(y+(π/4)))dy  =(π^2 /4)+πln((√2))+2∫_0 ^(π/4) ln(sin(y+(π/4)))dy+2∫_(π/4) ^(π/2) ln(sin(y+(π/4)))dy  =(π/2)((π/2)+ln(2))+2∫_0 ^(π/4) ln(cos(y))dy+2∫_0 ^(π/4) ln(cos(y))dy  ∫_0 ^(π/4) ln(cos(x))dx=(1/4)(2G−𝛑ln(2))  2G−π((ln(2))/2)+(π^2 /4)  ∫_0 ^π ((x^2 dx)/(1+sin(x)))=2π^2 −4(2G−((πln(2))/2)+(π^2 /4))  =π^2 +2πln(2)−8G
du=11+sin(x)u=2sin(x2)sin(x2)+cos(x2)IBP2π240πsin(x2)cos(x2)+sin(x2)xdx0πsin(x2)cos(x2)+sin(x2)xdx=40π2sin(y)sin(y)+cos(y)ydy=20π2ydy20π2cos(y)sin(y)sin(y)+cos(y)ydy=π24+20π2ln(sin(y)+cos(y))dyπ24+20π2ln(2)+ln(sin(y+π4))dy=π24+πln(2)+20π4ln(sin(y+π4))dy+2π4π2ln(sin(y+π4))dy=π2(π2+ln(2))+20π4ln(cos(y))dy+20π4ln(cos(y))dy0π4ln(cos(x))dx=14(2Gπln(2))2Gπln(2)2+π240πx2dx1+sin(x)=2π24(2Gπln(2)2+π24)=π2+2πln(2)8G
Commented by Ar Brandon last updated on 30/Dec/21
Cool ! Merci, grand.
Cool!Merci,grand.
Commented by mindispower last updated on 31/Dec/21
Avec plaisir Bonne journee
AvecplaisirBonnejournee
Commented by Ar Brandon last updated on 31/Dec/21
Meilleure a^�  vous !
Meilleurea`vous!
Commented by mindispower last updated on 31/Dec/21
tu vas faire MP maths spe?
tuvasfaireMPmathsspe?
Commented by Ar Brandon last updated on 31/Dec/21
Non, je n′ai pas penser a^�  le faire.  Je suis en 1^(er)  anne^� e IUT actuellement.  Et vous ?
Non,jenaipaspensera`lefaire.Jesuisen1erannee´IUTactuellement.Etvous?
Commented by mindispower last updated on 31/Dec/21
je suis en M2 Maths fondamental (Topologie Algebrique)  Bonne Continuation
jesuisenM2Mathsfondamental(TopologieAlgebrique)BonneContinuation
Commented by mindispower last updated on 01/Jan/22
bonjour je vais faire un compte  pour echanger pas de soucis
bonjourjevaisfaireuncomptepourechangerpasdesoucis

Leave a Reply

Your email address will not be published. Required fields are marked *