Menu Close

0-pi-x-2-cos-x-1-sin-x-2-dx-




Question Number 104220 by bemath last updated on 20/Jul/20
∫_0 ^π  ((x^2 cos x)/((1+sin x)^2 )) dx ?
π0x2cosx(1+sinx)2dx?
Commented by bemath last updated on 20/Jul/20
thank you both. cooll
thankyouboth.cooll
Answered by Ar Brandon last updated on 20/Jul/20
I=∫_0 ^π ((x^2 cosx)/((1+sinx)^2 ))dx , x=π−u  I=∫_0 ^π (((π−x)^2 cos(π−x))/((1+sin(π−x))^2 ))dx=−∫(((π−x)^2 cosx)/((1+sinx)^2 ))dx  2I=∫_0 ^π ((x^2 −(π^2 −2πx+x^2 ))/((1+sinx)^2 ))∙cosxdx=∫_0 ^π ((2πx−π^2 )/((1+sinx)^2 ))cosxdx       =∫_0 ^π {((2πxcosx)/((1+sinx)^2 ))−((π^2 cosx)/((1+sinx)^2 ))}dx=∫_0 ^π ((2πxcosx)/((1+sinx)^2 ))dx+[(π^2 /(1+sinx))]_0 ^π    u(x)=2πx⇒u′(x)=2π , v′(x)=((cosx)/((1+sinx)^2 ))⇒v(x)=((−1)/(1+sinx))  ⇒2I={((−2πx)/(1+sinx))+∫((2πdx)/(1+sinx))}_0 ^π   ∫(dx/(1+sinx))=∫((1−sinx)/(cos^2 x))dx=tanx−secx  ⇒2I=2π{((−x)/(1+sinx))+tanx−secx}_0 ^π =2π(2−π)  ⇒∫_0 ^π ((x^2 cosx)/((1+sinx)^2 ))dx=(2−π)π
I=0πx2cosx(1+sinx)2dx,x=πuI=0π(πx)2cos(πx)(1+sin(πx))2dx=(πx)2cosx(1+sinx)2dx2I=0πx2(π22πx+x2)(1+sinx)2cosxdx=0π2πxπ2(1+sinx)2cosxdx=0π{2πxcosx(1+sinx)2π2cosx(1+sinx)2}dx=0π2πxcosx(1+sinx)2dx+[π21+sinx]0πu(x)=2πxu(x)=2π,v(x)=cosx(1+sinx)2v(x)=11+sinx2I={2πx1+sinx+2πdx1+sinx}0πdx1+sinx=1sinxcos2xdx=tanxsecx2I=2π{x1+sinx+tanxsecx}0π=2π(2π)0πx2cosx(1+sinx)2dx=(2π)π
Answered by john santu last updated on 20/Jul/20
by parts   { ((u=x^2 ⇒du=2x dx)),((v=∫ ((d(1+sin x))/((1+sin x)^2 )) =−(1/(1+sin x)) )) :}  I= −(x^2 /(1+sin x)) ]_0 ^π  +∫_0 ^π  ((2x)/(1+sin x)) dx  I= −π^2 +∫_0 ^π  ((2x)/(1+sin x)) dx   set J = ∫_0 ^π  ((2x)/(1+sin x)) dx  replace x by π−x   J = ∫_π ^0  ((2(π−x))/(1+sin (π−x))) (−dx)  J=∫_0 ^π  ((2π−2x)/(1+sin x)) dx , so we have  2J = ∫_0 ^π  ((2π)/(1+sin x)) dx ⇒J = ∫_0 ^π (π/(1+sin x))dx  substitute t=x−(π/2)  J=∫_0 ^(π/2) π sec^2 ((t/2)) dt = 2π  hence we conclude that   = −π^2 +2π  (JS ⊛)
byparts{u=x2du=2xdxv=d(1+sinx)(1+sinx)2=11+sinxI=x21+sinx]0π+π02x1+sinxdxI=π2+π02x1+sinxdxsetJ=π02x1+sinxdxreplacexbyπxJ=0π2(πx)1+sin(πx)(dx)J=π02π2x1+sinxdx,sowehave2J=π02π1+sinxdxJ=π0π1+sinxdxsubstitutet=xπ2J=π/20πsec2(t2)dt=2πhenceweconcludethat=π2+2π(JS)
Answered by mathmax by abdo last updated on 20/Jul/20
I =∫_0 ^π  ((x^2 cosx)/((1+sinx)^2 ))dx  changement x =π−t give   I =−∫_0 ^π  (((π−t)^2 (cos(π−t)))/((1+sint)^2 ))(−dt) =−∫_0 ^π   (((π^2 −2πt +t^2 )cost)/((1+sint)^2 ))dt  =−π^2  ∫_0 ^π  ((cost)/((1+sint)^2 )) +2π ∫_0 ^π  ((tcost)/((1+sint)^2 ))dt −∫_0 ^π  ((t^2  cost)/((1+sint)^2 ))dt ⇒  2I =π^2 [(1/(1+sint))]_0 ^π  +2π ∫_0 ^π  ((tcost)/((1+sint)^2 ))dt  =0 +2π ∫_0 ^(π )  ((tcost)/((1+sint)^2 ))dx  by parts u^′  =((cost)/((1+sint)^2 )) and v =t ⇒  ∫_0 ^π  ((tcost)/((1+sint)^2 ))dt =[−(t/(1+sint))]_0 ^π  −∫_0 ^π  −(1/(1+sint))dt  =−π  +∫_0 ^π   (dt/(1+sint))  changement  tan((t/2))=u give  ∫_0 ^π  (dt/(1+sint)) =∫_0 ^∞   ((2du)/((1+u^2 )(1+((2u)/(1+u^2 ))))) =∫_0 ^∞  ((2du)/(1+u^2 +2u)) =∫_0 ^∞  ((2du)/((u+1)^2 )) =[((−2)/(u+1))]_0 ^∞ =2  ⇒2I =2π{−π +2} ⇒I =2π−π^2
I=0πx2cosx(1+sinx)2dxchangementx=πtgiveI=0π(πt)2(cos(πt))(1+sint)2(dt)=0π(π22πt+t2)cost(1+sint)2dt=π20πcost(1+sint)2+2π0πtcost(1+sint)2dt0πt2cost(1+sint)2dt2I=π2[11+sint]0π+2π0πtcost(1+sint)2dt=0+2π0πtcost(1+sint)2dxbypartsu=cost(1+sint)2andv=t0πtcost(1+sint)2dt=[t1+sint]0π0π11+sintdt=π+0πdt1+sintchangementtan(t2)=ugive0πdt1+sint=02du(1+u2)(1+2u1+u2)=02du1+u2+2u=02du(u+1)2=[2u+1]0=22I=2π{π+2}I=2ππ2

Leave a Reply

Your email address will not be published. Required fields are marked *