Menu Close

0-pi-x-dx-1-sin-2-x-




Question Number 120688 by bobhans last updated on 01/Nov/20
 ∫_0 ^π  ((x dx)/(1+sin^2 x))
π0xdx1+sin2x
Answered by john santu last updated on 02/Nov/20
 ψ = ∫_0 ^π  ((x dx)/(1+sin^2 x)) ;  [ let x = π−w ]   ψ = ∫_π ^0  (((π−x)(−dw))/(1+sin^2 (π−w)^2 )) = ∫_0 ^π  ((π−w)/(1+sin^2 w)) dw  adding the equation give  2ψ = ∫_0 ^π  (π/(1+sin^2 x)) dx   ψ=(1/2)∫_0 ^π  (π/(1+sin^2 x)) dx =(π/2)∫_0 ^π  ((cosec^2 x dx)/(cosec^2 x+1))  ψ=(π/2)∫_0 ^π  ((cosec^2 x dx)/((1+cot^2 x)+1)) = (π/2)∫_(−∞) ^∞  ((1 dt)/(2+t^2  )) ; where t = cot x  ψ=(π/2).(1/( (√2))) arc tan ((t/( (√2)))) ∣_(−∞) ^∞   ψ=(π/(2(√2))) [(π/2)−(−(π/2)) ]= (π^2 /(2(√2))) .▲
ψ=π0xdx1+sin2x;[letx=πw]ψ=0π(πx)(dw)1+sin2(πw)2=π0πw1+sin2wdwaddingtheequationgive2ψ=π0π1+sin2xdxψ=12π0π1+sin2xdx=π2π0cosec2xdxcosec2x+1ψ=π2π0cosec2xdx(1+cot2x)+1=π21dt2+t2;wheret=cotxψ=π2.12arctan(t2)ψ=π22[π2(π2)]=π222.

Leave a Reply

Your email address will not be published. Required fields are marked *