Menu Close

0-pi-x-ln-sin-x-dx-




Question Number 82174 by jagoll last updated on 18/Feb/20
∫_0 ^π  x ln(sin x) dx = ?
π0xln(sinx)dx=?
Commented by mathmax by abdo last updated on 19/Feb/20
let I =∫_0 ^π xln(sinx)dx ⇒I=∫_0 ^(π/2)  x ln(sinx)dx +∫_(π/2) ^π  xln(sinx)dx  but ∫_(π/2) ^π  x ln(sinx)dx =_(x=(π/2) +α)  ∫_0 ^(π/2) ((π/2) +α)ln(cosα)dα  =(π/2) ∫_0 ^(π/2)  ln(cosα)dα +∫_0 ^(π/2)  αln(cosα)dα ⇒  I =(π/2) ∫_0 ^(π/2)  ln(cosα)dα  +∫_0 ^(π/2) x(ln(sinx)+ln(cosx) dx  =(π/2) ∫_0 ^(π/2)  ln(cosα)dα +∫_0 ^(π/2) xln((1/2)sin(2x))dx  =(π/2) ∫_0 ^(π/2)  ln(cosα)dα −ln(2)∫_0 ^(π/2)  x dx +∫_0 ^(π/2)  xln(2x)dx_(→2x=t)   =(π/2) ∫_0 ^(π/2) ln(cosα)dα −ln(2)[(x^2 /2)]_0 ^(π/2)    +(1/2) ∫_0 ^π tln(t)(dt/2)  =(π/2)∫_0 ^(π/2)  ln(cosα)dα −ln(2){(π^2 /8)} +(1/4) I ⇒  (3/4) I =(π/2)(−(π/2)ln(2))−(π^2 /8)ln(2) =−(π^2 /4)ln(2)−(π^2 /8)ln(2)   =−((3π^2 )/8)ln(2) ⇒ I =(4/3)(−((3π^2 )/8))ln(2) =−(π^2 /2)ln(2)
letI=0πxln(sinx)dxI=0π2xln(sinx)dx+π2πxln(sinx)dxbutπ2πxln(sinx)dx=x=π2+α0π2(π2+α)ln(cosα)dα=π20π2ln(cosα)dα+0π2αln(cosα)dαI=π20π2ln(cosα)dα+0π2x(ln(sinx)+ln(cosx)dx=π20π2ln(cosα)dα+0π2xln(12sin(2x))dx=π20π2ln(cosα)dαln(2)0π2xdx+0π2xln(2x)dx2x=t=π20π2ln(cosα)dαln(2)[x22]0π2+120πtln(t)dt2=π20π2ln(cosα)dαln(2){π28}+14I34I=π2(π2ln(2))π28ln(2)=π24ln(2)π28ln(2)=3π28ln(2)I=43(3π28)ln(2)=π22ln(2)
Answered by Kunal12588 last updated on 19/Feb/20
I=∫_0 ^π x log(sin x) dx  ⇒I=∫_0 ^π (x−π) log(sin x) dx  ⇒I=(π/2)∫_0 ^π  log(sin x) dx  ⇒I=π∫_0 ^(π/2) log(sin x) dx  [★ ∫_0 ^(π/2) log(sin x) dx=∫_0 ^(π/2) log(cos x)dx=−(π/2)log(2)]  ⇒I=π(((−π)/2)log(2))=((−π^2 )/2)log(2)  ∴ ∫_0 ^( π) x log(sin x) dx=−(π^2 /2)log (2)   [★here  “log a” means“log_e a”]
I=0πxlog(sinx)dxI=0π(xπ)log(sinx)dxI=π20πlog(sinx)dxI=π0π/2log(sinx)dx[0π/2log(sinx)dx=0π/2log(cosx)dx=π2log(2)]I=π(π2log(2))=π22log(2)0πxlog(sinx)dx=π22log(2)[herelogameanslogea]
Commented by Kunal12588 last updated on 19/Feb/20
★  T.P ∫_0 ^(π/2) log(sin x) dx= ((−π)/2)log(2)  I=∫_0 ^(π/2) log(sin x)dx  ⇒I=∫_0 ^(π/2) log(cos x)dx  ⇒I=(1/2)∫_0 ^(π/2) log(sin x cos x)dx  ⇒I=(1/2)∫_0 ^(π/2) log(sin 2x)dx−(1/2)∫_0 ^( π/2) log 2 dx  ⇒I=(1/2)∫_0 ^(π/2) log(sin 2x)dx−(π/4)log 2  let 2x = t ⇒ dx=(1/2)dt  I=(1/4)∫_0 ^π log(sin t)dt−(π/4)log 2  ⇒I=(1/2)∫_0 ^(π/2) log(cos x)dx−(π/4)log 2  ⇒I=(1/2)∫_0 ^(π/2) log(sin x)dx−(π/4)log 2  ⇒I=(1/2)I−(π/4)log 2  ⇒(1/2)I=−(π/4)log 2  ⇒I=−(π/2)log 2  ⇒ ∫_0 ^(π/2) log(sin x) dx= ((−π)/2)log(2)
T.P0π/2log(sinx)dx=π2log(2)I=0π/2log(sinx)dxI=0π/2log(cosx)dxI=120π/2log(sinxcosx)dxI=120π/2log(sin2x)dx120π/2log2dxI=120π/2log(sin2x)dxπ4log2let2x=tdx=12dtI=140πlog(sint)dtπ4log2I=120π/2log(cosx)dxπ4log2I=120π/2log(sinx)dxπ4log2I=12Iπ4log212I=π4log2I=π2log20π/2log(sinx)dx=π2log(2)

Leave a Reply

Your email address will not be published. Required fields are marked *