0-pi-x-ln-sin-x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 82174 by jagoll last updated on 18/Feb/20 ∫π0xln(sinx)dx=? Commented by mathmax by abdo last updated on 19/Feb/20 letI=∫0πxln(sinx)dx⇒I=∫0π2xln(sinx)dx+∫π2πxln(sinx)dxbut∫π2πxln(sinx)dx=x=π2+α∫0π2(π2+α)ln(cosα)dα=π2∫0π2ln(cosα)dα+∫0π2αln(cosα)dα⇒I=π2∫0π2ln(cosα)dα+∫0π2x(ln(sinx)+ln(cosx)dx=π2∫0π2ln(cosα)dα+∫0π2xln(12sin(2x))dx=π2∫0π2ln(cosα)dα−ln(2)∫0π2xdx+∫0π2xln(2x)dx→2x=t=π2∫0π2ln(cosα)dα−ln(2)[x22]0π2+12∫0πtln(t)dt2=π2∫0π2ln(cosα)dα−ln(2){π28}+14I⇒34I=π2(−π2ln(2))−π28ln(2)=−π24ln(2)−π28ln(2)=−3π28ln(2)⇒I=43(−3π28)ln(2)=−π22ln(2) Answered by Kunal12588 last updated on 19/Feb/20 I=∫0πxlog(sinx)dx⇒I=∫0π(x−π)log(sinx)dx⇒I=π2∫0πlog(sinx)dx⇒I=π∫0π/2log(sinx)dx[★∫0π/2log(sinx)dx=∫0π/2log(cosx)dx=−π2log(2)]⇒I=π(−π2log(2))=−π22log(2)∴∫0πxlog(sinx)dx=−π22log(2)[★here“loga″means“logea″] Commented by Kunal12588 last updated on 19/Feb/20 ★T.P∫0π/2log(sinx)dx=−π2log(2)I=∫0π/2log(sinx)dx⇒I=∫0π/2log(cosx)dx⇒I=12∫0π/2log(sinxcosx)dx⇒I=12∫0π/2log(sin2x)dx−12∫0π/2log2dx⇒I=12∫0π/2log(sin2x)dx−π4log2let2x=t⇒dx=12dtI=14∫0πlog(sint)dt−π4log2⇒I=12∫0π/2log(cosx)dx−π4log2⇒I=12∫0π/2log(sinx)dx−π4log2⇒I=12I−π4log2⇒12I=−π4log2⇒I=−π2log2⇒∫0π/2log(sinx)dx=−π2log(2) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: lim-x-8x-3-4x-2-1-1-3-8x-3-px-2-1-1-3-1-4-find-p-Next Next post: Prove-that-p-is-a-prime-number-if-and-only-if-every-equiangular-polygon-with-p-sides-of-rational-lengths-is-regular- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.