Menu Close

0-pi-x-sin-x-1-cos-2-x-dx-




Question Number 113738 by bemath last updated on 15/Sep/20
 ∫_0 ^π  ((x sin x)/(1+cos^2 x)) dx ?
π0xsinx1+cos2xdx?
Answered by bobhans last updated on 15/Sep/20
I = ∫_0 ^π  ((x sin x)/(1+cos^2 x)) dx   replace x by π−x →I=∫_π ^0  (((π−x)sin (π−x))/(1+cos^2 (π−x))) (−dx)  I= ∫_0 ^π  (((π−x)sin x)/(1+cos^2 x)) dx = ∫_0 ^π  ((πsin x)/(1+cos^2 x)) dx−∫_0 ^π  ((xsin x)/(1+cos^2 x)) dx  2I = ∫_0 ^π  ((π sin x)/(1+cos^2 x)) dx   consider ∫ ((π sin x)/(1+cos x))dx = −π∫ ((d(cos x))/(1+cos^2 x))                                                     = −π∫ (du/(1+u^2 ))                                                     = −π tan^(−1) (cos x) + c        now we have 2I = −π [ tan^(−1) (cos x) ]_0 ^π   I = −(π/2)[−(π/4)−(π/4) ]= (π^2 /4).
I=π0xsinx1+cos2xdxreplacexbyπxI=0π(πx)sin(πx)1+cos2(πx)(dx)I=π0(πx)sinx1+cos2xdx=π0πsinx1+cos2xdxπ0xsinx1+cos2xdx2I=π0πsinx1+cos2xdxconsiderπsinx1+cosxdx=πd(cosx)1+cos2x=πdu1+u2=πtan1(cosx)+cnowwehave2I=π[tan1(cosx)]0πI=π2[π4π4]=π24.

Leave a Reply

Your email address will not be published. Required fields are marked *