0-pi-x-sin-x-1-cos-2-x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 113738 by bemath last updated on 15/Sep/20 ∫π0xsinx1+cos2xdx? Answered by bobhans last updated on 15/Sep/20 I=∫π0xsinx1+cos2xdxreplacexbyπ−x→I=∫0π(π−x)sin(π−x)1+cos2(π−x)(−dx)I=∫π0(π−x)sinx1+cos2xdx=∫π0πsinx1+cos2xdx−∫π0xsinx1+cos2xdx2I=∫π0πsinx1+cos2xdxconsider∫πsinx1+cosxdx=−π∫d(cosx)1+cos2x=−π∫du1+u2=−πtan−1(cosx)+cnowwehave2I=−π[tan−1(cosx)]0πI=−π2[−π4−π4]=π24. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: how-can-I-get-the-x-a-3-x-4-x-5-x-b-7-6-x-x-2-c-2-3-x-2-3-x-2-x-d-3-x-2-9-x-Next Next post: In-triangle-ABC-has-positive-integer-sides-A-2-B-and-C-gt-pi-2-What-is-the-minimum-length-of-the-perimeter-of-the-triangle- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.