Menu Close

0-pi-x-tan-2-x-1-dx-




Question Number 61408 by aliesam last updated on 02/Jun/19
∫_0 ^π (x/(tan^2 (x)−1)) dx
0πxtan2(x)1dx
Answered by tanmay last updated on 02/Jun/19
∫_0 ^π ((π−x)/(tan^2 (π−x)−1))dx  =∫_0 ^π ((π−x)/(tan^2 (x)−1))dx  2I=∫_0 ^π (π/(tan^2 (x)−1))dx  ((2I)/π)=∫_0 ^π (dx/(tan^2 (x)−1))=∫_0 ^π ((cos^2 x)/(sin^2 x−cos^2 x))dx  ∫_0 ^(2a) f(x)dx=2∫_0 ^a f(x)dx  [when f(2a−x)=f(x)  ((2I)/π)=2∫_0 ^(π/2) ((cos^2 x)/(sin^2 x−cos^2 x))dx  (I/π)=∫_0 ^(π/2) ((cos^2 ((π/2)−x))/(sin^2 ((π/2)−x)−cos^2 ((π/2)−x)))dx  (I/π)=∫_0 ^(π/2) ((sin^2 x)/(cos^2 x−sin^2 x))dx=∫_0 ^(π/2) ((−sin^2 x)/(sin^2 x−cos^2 x))dx  ((2I)/π)=∫_0 ^(π/2) ((cos^2 x−sin^2 x)/(sin^2 x−cos^2 x))dx  ((2I)/π)=∣−x∣_0 ^(π/2)   ((2I)/π)=−(π/2)  I=((−π^2 )/4) pls check
0ππxtan2(πx)1dx=0ππxtan2(x)1dx2I=0ππtan2(x)1dx2Iπ=0πdxtan2(x)1=0πcos2xsin2xcos2xdx02af(x)dx=20af(x)dx[whenf(2ax)=f(x)2Iπ=20π2cos2xsin2xcos2xdxIπ=0π2cos2(π2x)sin2(π2x)cos2(π2x)dxIπ=0π2sin2xcos2xsin2xdx=0π2sin2xsin2xcos2xdx2Iπ=0π2cos2xsin2xsin2xcos2xdx2Iπ=∣x0π22Iπ=π2I=π24plscheck
Commented by aliesam last updated on 02/Jun/19
thank you sir a brilliant sol
thankyousirabrilliantsol
Commented by tanmay last updated on 02/Jun/19
most welcome sir...
mostwelcomesir

Leave a Reply

Your email address will not be published. Required fields are marked *