0-pi-x-tan-2-x-1-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 61408 by aliesam last updated on 02/Jun/19 ∫0πxtan2(x)−1dx Answered by tanmay last updated on 02/Jun/19 ∫0ππ−xtan2(π−x)−1dx=∫0ππ−xtan2(x)−1dx2I=∫0ππtan2(x)−1dx2Iπ=∫0πdxtan2(x)−1=∫0πcos2xsin2x−cos2xdx∫02af(x)dx=2∫0af(x)dx[whenf(2a−x)=f(x)2Iπ=2∫0π2cos2xsin2x−cos2xdxIπ=∫0π2cos2(π2−x)sin2(π2−x)−cos2(π2−x)dxIπ=∫0π2sin2xcos2x−sin2xdx=∫0π2−sin2xsin2x−cos2xdx2Iπ=∫0π2cos2x−sin2xsin2x−cos2xdx2Iπ=∣−x∣0π22Iπ=−π2I=−π24plscheck Commented by aliesam last updated on 02/Jun/19 thankyousirabrilliantsol Commented by tanmay last updated on 02/Jun/19 mostwelcomesir… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: A-heat-transfer-of-9-0-10-5-J-is-required-to-convert-a-block-of-ice-at-20-C-to-water-at-15-C-what-was-the-mass-of-the-block-of-ice-Next Next post: Question-192481 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.