0-pi-xdx-a-2-cos-2-x-b-2-sin-2-x-2- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 151429 by peter frank last updated on 21/Aug/21 ∫0πxdx(a2cos2x+b2sin2x)2 Answered by Olaf_Thorendsen last updated on 21/Aug/21 I=∫0πx(a2cos2x+b2sin2x)2dxLetu=π−x:I=∫0ππ−u(a2cos2u+b2sin2u)2du⇒2I=∫0ππ(a2cos2u+b2sin2u)2du⇒I=π2∫0πdua4cos4u(1+b2a2tan2u)2I=π∫0π2dua4cos4u(1+b2a2tan2u)2Lett=tanu:I=π∫0∞dt1+t2a41(1+t2)2(1+b2a2t2)2I=πa4∫0∞1+t2(1+b2a2t2)2dtI=πa2b2∫0∞b2a2+b2a2t2(1+b2a2t2)2dtI=πa2b2∫0∞(11+b2a2t2−1−b2a2(1+b2a2t2)2)dtI=πa2b2[abarctan(bat)+a2−b22.t(a2+b2t2)+a2−b22abarctan(bat)]0∞I=πa2b2(π2.ab+0+π2.a2−b22ab)I=π2(3a2−b2)4a3b3 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Is-there-a-sum-for-p-q-or-an-integral-for-any-fraction-p-q-Next Next post: Question-85896 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.