Menu Close

0-pi-xdx-a-2-cos-2-x-b-2-sin-2-x-2-




Question Number 151429 by peter frank last updated on 21/Aug/21
∫_0 ^π ((xdx)/((a^2 cos^2 x+b^2 sin^2 x)^2 ))
0πxdx(a2cos2x+b2sin2x)2
Answered by Olaf_Thorendsen last updated on 21/Aug/21
I = ∫_0 ^π (x/((a^2 cos^2 x+b^2 sin^2 x)^2 )) dx  Let u = π−x :  I = ∫_0 ^π ((π−u)/((a^2 cos^2 u+b^2 sin^2 u)^2 )) du  ⇒ 2I = ∫_0 ^π (π/((a^2 cos^2 u+b^2 sin^2 u)^2 )) du  ⇒ I = (π/2)∫_0 ^π (du/(a^4 cos^4 u(1+(b^2 /a^2 )tan^2 u)^2 ))   I = π∫_0 ^(π/2) (du/(a^4 cos^4 u(1+(b^2 /a^2 )tan^2 u)^2 ))  Let t = tanu :  I = π∫_0 ^∞ ((dt/(1+t^2 ))/(a^4 (1/((1+t^2 )^2 ))(1+(b^2 /a^2 )t^2 )^2 ))  I = (π/a^4 )∫_0 ^∞ ((1+t^2 )/((1+(b^2 /a^2 )t^2 )^2 )) dt  I = (π/(a^2 b^2 ))∫_0 ^∞ (((b^2 /a^2 )+(b^2 /a^2 )t^2 )/((1+(b^2 /a^2 )t^2 )^2 )) dt  I = (π/(a^2 b^2 ))∫_0 ^∞ ((1/(1+(b^2 /a^2 )t^2 ))−((1−(b^2 /a^2 ))/((1+(b^2 /a^2 )t^2 )^2 ))) dt  I = (π/(a^2 b^2 ))[(a/b)arctan((b/a)t)+((a^2 −b^2 )/2).(t/((a^2 +b^2 t^2 )))  +((a^2 −b^2 )/(2ab))arctan((b/a)t)]_0 ^∞   I = (π/(a^2 b^2 ))((π/2).(a/b)+0+(π/2).((a^2 −b^2 )/(2ab)))  I = ((π^2 (3a^2 −b^2 ))/(4a^3 b^3 ))
I=0πx(a2cos2x+b2sin2x)2dxLetu=πx:I=0ππu(a2cos2u+b2sin2u)2du2I=0ππ(a2cos2u+b2sin2u)2duI=π20πdua4cos4u(1+b2a2tan2u)2I=π0π2dua4cos4u(1+b2a2tan2u)2Lett=tanu:I=π0dt1+t2a41(1+t2)2(1+b2a2t2)2I=πa401+t2(1+b2a2t2)2dtI=πa2b20b2a2+b2a2t2(1+b2a2t2)2dtI=πa2b20(11+b2a2t21b2a2(1+b2a2t2)2)dtI=πa2b2[abarctan(bat)+a2b22.t(a2+b2t2)+a2b22abarctan(bat)]0I=πa2b2(π2.ab+0+π2.a2b22ab)I=π2(3a2b2)4a3b3

Leave a Reply

Your email address will not be published. Required fields are marked *