Menu Close

0-pi-xtan-x-sec-x-tan-x-dx-is-it-pi-2-2-pi-




Question Number 55930 by ajfour last updated on 06/Mar/19
∫_0 ^(  π) ((xtan x)/(sec x+tan x))dx = (is it (π^2 /2)−π)?
0πxtanxsecx+tanxdx=(isitπ22π)?
Answered by tanmay.chaudhury50@gmail.com last updated on 06/Mar/19
∫_0 ^π ((xsinx)/(1+sinx))dx  I=∫_0 ^π (((π−x)sin(π−x))/(1+sin(π−x)))dx  =∫_0 ^π (((π−x)sinx)/(1+sinx))dx  2I=∫_0 ^π ((πsinx−xsinx+xsinx)/(1+sinx))dx  2I=π∫_0 ^π ((sinx)/(1+sinx))dx  =π∫_0 ^π (1−(1/(1+sinx)))dx  ((2I)/π)=∫_0 ^π dx−∫_0 ^π ((1−sinx)/(cos^2 x))dx  ((2I)/π)=∫_0 ^π dx−∫_0 ^π sec^2 xdx+∫_0 ^π secxtanxdx  ((2I)/π)=∣x−tanx+secx∣_0 ^π   ((2I)/π)=(π−0−1)−(0−0+1)  ((2I)/π)=π−1−1  2I=π^2 −2π  I=(π^2 /2)−π
0πxsinx1+sinxdxI=0π(πx)sin(πx)1+sin(πx)dx=0π(πx)sinx1+sinxdx2I=0ππsinxxsinx+xsinx1+sinxdx2I=π0πsinx1+sinxdx=π0π(111+sinx)dx2Iπ=0πdx0π1sinxcos2xdx2Iπ=0πdx0πsec2xdx+0πsecxtanxdx2Iπ=∣xtanx+secx0π2Iπ=(π01)(00+1)2Iπ=π112I=π22πI=π22π
Commented by ajfour last updated on 06/Mar/19
Thanks Sir, great!
ThanksSir,great!
Commented by tanmay.chaudhury50@gmail.com last updated on 06/Mar/19
thank you sir...
thankyousir
Commented by maxmathsup by imad last updated on 09/Mar/19
I =∫_0 ^π  ((x(1+sinx−1))/(1+sinx))dx =∫_0 ^π  xdx −∫_0 ^π   (x/(1+sinx)) dx but  ∫_0 ^π  xdx =[(x^2 /2)]_0 ^π =(π^2 /2)   and ∫_0 ^π   (x/(1+sinx)) dx =_(tan((x/2))=t)   ∫_0 ^∞     ((2arctan(t))/(1+((2t)/(1+t^2 )))) ((2dt)/(1+t^2 ))  =4 ∫_0 ^∞    ((arctan(t))/(1+t^2  +2t)) dt =4 ∫_0 ^∞   ((arctan(t))/((t+1)^2 )) dt     ( and by parts)  =4{ [−((arctan(t))/(t+1))]_0 ^∞  +∫_0 ^∞    (1/((t+1)(t^2 +1)))dt}  =4 ∫_0 ^∞      (dt/((t+1)(t^2  +1))) dt  let decompose F(t) =(1/((t+1)(t^2  +1))) ⇒  F(t) =(a/(t+1)) +((bt +c)/(t^2  +1))  a =lim_(t→−1) (t+1)F(t) = (1/2)  lim_(t→+∞) tF(t) = 0 =a+b ⇒b =−a =−(1/2) ⇒F(t)=(1/(2(t+1))) +((−(t/2)+c)/(t^2  +1))  F(0) =1 =(1/2) +c ⇒c=(1/2) ⇒F(t)=(1/(2(t+1))) −(1/2) ((t−1)/(t^2  +1)) ⇒  ∫_0 ^∞  F(t)dt =(1/2)[ln∣t+1∣−(1/2)ln(t^2  +1)]_0 ^(+∞)  +(1/2)[arctan(t)]_0 ^(+∞)   =(1/2)[ln∣((t+1)/( (√(t^2  +1))))∣]_0 ^∞  +(π/4) =(π/4) ⇒  I =(π^2 /2) −4((π/4)) =(π^2 /2)−π  .
I=0πx(1+sinx1)1+sinxdx=0πxdx0πx1+sinxdxbut0πxdx=[x22]0π=π22and0πx1+sinxdx=tan(x2)=t02arctan(t)1+2t1+t22dt1+t2=40arctan(t)1+t2+2tdt=40arctan(t)(t+1)2dt(andbyparts)=4{[arctan(t)t+1]0+01(t+1)(t2+1)dt}=40dt(t+1)(t2+1)dtletdecomposeF(t)=1(t+1)(t2+1)F(t)=at+1+bt+ct2+1a=limt1(t+1)F(t)=12limt+tF(t)=0=a+bb=a=12F(t)=12(t+1)+t2+ct2+1F(0)=1=12+cc=12F(t)=12(t+1)12t1t2+10F(t)dt=12[lnt+112ln(t2+1)]0++12[arctan(t)]0+=12[lnt+1t2+1]0+π4=π4I=π224(π4)=π22π.
Answered by MJS last updated on 06/Mar/19
∫((xtan x)/(sec x +tan x))dx=∫((xsin x)/(1+sin x))dx=∫xdx−∫(x/(1+sin x))dx=  =(x^2 /2)−∫(x/(1+sin x))dx=       ∫(x/(1+sin x))dx=            [∫u′v=uv−∫uv′; u′=(1/(1+sin x)); v=x             u=−((cos x)/(1+sin x)); v′=1]       =−((xcos x)/(1+sin x))+∫((cos x)/(1+sin x))dx=       =−((xcos x)/(1+sin x))+ln (1+sin x)  =(x^2 /2)+((xcos x)/(1+sin x))−ln (1+sin x) +C  ⇒ your value is true
xtanxsecx+tanxdx=xsinx1+sinxdx=xdxx1+sinxdx==x22x1+sinxdx=x1+sinxdx=[uv=uvuv;u=11+sinx;v=xu=cosx1+sinx;v=1]=xcosx1+sinx+cosx1+sinxdx==xcosx1+sinx+ln(1+sinx)=x22+xcosx1+sinxln(1+sinx)+Cyourvalueistrue
Commented by ajfour last updated on 06/Mar/19
Thanks MJS Sir!
ThanksMJSSir!

Leave a Reply

Your email address will not be published. Required fields are marked *