Menu Close

0-r-1-r-2-x-2-dx-




Question Number 185471 by liuxinnan last updated on 22/Jan/23
∫_( 0) ^( r) (1/( (√(r^2 −x^2 ))))dx=?
$$\int_{\:\mathrm{0}} ^{\:{r}} \frac{\mathrm{1}}{\:\sqrt{{r}^{\mathrm{2}} −{x}^{\mathrm{2}} }}{dx}=? \\ $$
Answered by hmr last updated on 22/Jan/23
= [sin^(−1)  ((x/r))]_(  0) ^(  r)   = (sin^(−1)  ((r/r))) − (sin^(−1)  ((0/r)))  = (π/2) − 0 = (π/2)
$$=\:\left[{sin}^{−\mathrm{1}} \:\left(\frac{{x}}{{r}}\right)\underset{\:\:\mathrm{0}} {\overset{\:\:{r}} {\right]}} \\ $$$$=\:\left({sin}^{−\mathrm{1}} \:\left(\frac{{r}}{{r}}\right)\right)\:−\:\left({sin}^{−\mathrm{1}} \:\left(\frac{\mathrm{0}}{{r}}\right)\right) \\ $$$$=\:\frac{\pi}{\mathrm{2}}\:−\:\mathrm{0}\:=\:\frac{\pi}{\mathrm{2}} \\ $$
Answered by mr W last updated on 22/Jan/23
let x=r sin θ  dx=r cos θ dθ  I=∫_0 ^(π/2) ((r cos θ dθ)/(r cos θ))=∫_0 ^(π/2) dθ=(π/2)
$${let}\:{x}={r}\:\mathrm{sin}\:\theta \\ $$$${dx}={r}\:\mathrm{cos}\:\theta\:{d}\theta \\ $$$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{r}\:\mathrm{cos}\:\theta\:{d}\theta}{{r}\:\mathrm{cos}\:\theta}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {d}\theta=\frac{\pi}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *