Question Number 167512 by MikeH last updated on 18/Mar/22

Commented by mr W last updated on 18/Mar/22

Commented by MikeH last updated on 18/Mar/22

Answered by LEKOUMA last updated on 18/Mar/22
![Posons x=rsin t ⇒ dt=rcos tdt si x=0 ⇒ t=0 x=r ⇒ t=(( π)/2) =∫_0 ^(π/2) (√(r^2 −r^2 sin^2 t))×rcos tdt =∫_0 ^(π/2) (√(r^2 (1−sin^2 t)))×rcos tdt =∫_0 ^(π/2) r^2 cos^2 tdt=r^2 ∫_0 ^(π/2) cos^2 tdt =r^2 ∫_0 ^(π/2) (((1+cos 2t)/2))dt=(1/2)r^2 (∫_0 ^(π/2) dt+∫_0 ^(π/2) cos 2tdt) =(1/2)r^2 ([t]_0 ^(π/2) +[(1/2)sin 2t]_0 ^(π/2) ) =(1/2)r^2 ((π/2))=((r^2 π)/4)](https://www.tinkutara.com/question/Q167514.png)
Commented by MikeH last updated on 18/Mar/22
