Menu Close

0-r-r-2-x-2-dx-




Question Number 167512 by MikeH last updated on 18/Mar/22
∫_0 ^r (√(r^2 −x^2 )) dx
0rr2x2dx
Commented by mr W last updated on 18/Mar/22
=area of a quater circle=((πr^2 )/4)
=areaofaquatercircle=πr24
Commented by MikeH last updated on 18/Mar/22
thanks sir. please can you   look at Q167520
thankssir.pleasecanyoulookatQ167520
Answered by LEKOUMA last updated on 18/Mar/22
Posons  x=rsin t ⇒ dt=rcos tdt  si x=0 ⇒ t=0  x=r ⇒ t=(( π)/2)  =∫_0 ^(π/2) (√(r^2 −r^2 sin^2 t))×rcos tdt  =∫_0 ^(π/2) (√(r^2 (1−sin^2 t)))×rcos tdt  =∫_0 ^(π/2) r^2 cos^2 tdt=r^2 ∫_0 ^(π/2) cos^2 tdt  =r^2 ∫_0 ^(π/2) (((1+cos 2t)/2))dt=(1/2)r^2 (∫_0 ^(π/2) dt+∫_0 ^(π/2) cos 2tdt)  =(1/2)r^2 ([t]_0 ^(π/2) +[(1/2)sin 2t]_0 ^(π/2) )  =(1/2)r^2 ((π/2))=((r^2 π)/4)
Posonsx=rsintdt=rcostdtsix=0t=0x=rt=π2=0π2r2r2sin2t×rcostdt=0π2r2(1sin2t)×rcostdt=0π2r2cos2tdt=r20π2cos2tdt=r20π2(1+cos2t2)dt=12r2(0π2dt+0π2cos2tdt)=12r2([t]0π2+[12sin2t]0π2)=12r2(π2)=r2π4
Commented by MikeH last updated on 18/Mar/22
thanks a lot
thanksalot

Leave a Reply

Your email address will not be published. Required fields are marked *