0-sin-2-x-x-x-dx-pi- Tinku Tara June 4, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 150828 by mnjuly1970 last updated on 15/Aug/21 ∫0∞sin2(x)xxdx=?π Answered by puissant last updated on 16/Aug/21 Q=∫0∞sin2xxxdx=∫0∞x−32sin2xdx=[11−32x−12sin2x]0∞−∫0∞−2x−12×2sinxcosxdx=2∫0∞sin2xxdx=x→u2∫0∞sin2u2u(2udu)=4∫0∞sin2u2du=−4im(∫0∞e−2iu2du)∵∵∵∫0∞e−(2iu)2du=2iu→z∫0ze−z2dz2i=12e−iπ4×π2=π22(22−i22)=π4−iπ4Q=−4im(∫0∞e−2iu2du)=−4(−π4)∵∴Q=π..…………Lepuissant………. Commented by mnjuly1970 last updated on 16/Aug/21 thankyousomuch… Answered by mathmax by abdo last updated on 17/Aug/21 Υ=∫0∞sin2(x)xxdx=x=t∫0∞sin2(t2)t3(2t)dt=2∫0∞sin2(t2)t2dt=2{[−1tsin2(t2)]0∞−∫0∞−1t×2sin(t2)2t)cos(t2)dt}=2∫0∞sin(2t2)dt=2∫−∞+∞sin(2t2)dt=−2Im(∫−∞+∞e−2it2dt)∫−∞+∞e−(2i)t2dt=2it=y∫−∞+∞e−y2dy2i=π2eiπ4=π2e−iπ4=π2(12−i2)=π2−iπ2⇒Υ=2×π2=π Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-19758Next Next post: Question-150838 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.