Menu Close

0-sin-2-x-x-x-dx-pi-




Question Number 150828 by mnjuly1970 last updated on 15/Aug/21
   ∫_0 ^( ∞) (( sin^( 2) (x ))/(x(√x))) dx=^?  (√π)
0sin2(x)xxdx=?π
Answered by puissant last updated on 16/Aug/21
Q=∫_0 ^∞ ((sin^2 x)/(x(√x)))dx  =∫_0 ^∞ x^(−(3/2)) sin^2 xdx  =[(1/(1−(3/2)))x^(−(1/2)) sin^2 x]_0 ^∞ −∫_0 ^∞ −2x^(−(1/2)) ×2sinxcosxdx  =2∫_0 ^∞ ((sin2x)/( (√x)))dx  =_( (√x)→u) 2∫_0 ^∞ ((sin2u^2 )/u)(2udu)  =4∫_0 ^∞ sin2u^2 du = −4 im(∫_0 ^∞ e^(−2iu^2 ) du)   ∵   ∵   ∵  ∫_0 ^∞ e^(−((√(2i))u)^2 ) du =_( (√(2i))u→z) ∫_0 ^z e^(−z^2 ) (dz/( (√(2i))))  =(1/( (√2)))e^(−i(π/4)) ×((√π)/2)  =((√π)/(2(√2)))(((√2)/2)−i((√2)/2)) = ((√π)/4)−i((√π)/4)  Q = −4 im(∫_0 ^∞ e^(−2iu^2 ) du) = −4(−((√π)/4))        ∵∴  Q = (√π)..              ............Le puissant..........
Q=0sin2xxxdx=0x32sin2xdx=[1132x12sin2x]002x12×2sinxcosxdx=20sin2xxdx=xu20sin2u2u(2udu)=40sin2u2du=4im(0e2iu2du)0e(2iu)2du=2iuz0zez2dz2i=12eiπ4×π2=π22(22i22)=π4iπ4Q=4im(0e2iu2du)=4(π4)∵∴Q=π..Lepuissant.
Commented by mnjuly1970 last updated on 16/Aug/21
thank you so much...
thankyousomuch
Answered by mathmax by abdo last updated on 17/Aug/21
Υ=∫_0 ^∞  ((sin^2 (x))/(x(√x)))dx =_((√x)=t)   ∫_0 ^∞  ((sin^2 (t^2 ))/t^3 )(2t)dt  =2∫_0 ^∞  ((sin^2 (t^2 ))/t^2 )dt =2{  [−(1/t)sin^2 (t^2 )]_0 ^∞ −∫_0 ^∞ −(1/t)×2sin(t^2 )2t)cos(t^2 )dt}  =2∫_0 ^∞ sin(2t^2 )dt =2∫_(−∞) ^(+∞)  sin(2t^2 )dt =−2Im(∫_(−∞) ^(+∞)  e^(−2it^2 ) dt)  ∫_(−∞) ^(+∞)  e^(−((√2)i)t^2 ) dt =_((√2)it=y)   ∫_(−∞) ^(+∞)  e^(−y^2 ) (dy/( (√2)i))  =((√π)/( (√2)e^((iπ)/4) ))=((√π)/( (√2)))e^(−((iπ)/4))  =((√π)/( (√2)))((1/( (√2)))−(i/( (√2))))=((√π)/2)−((i(√π))/2) ⇒  Υ=2×((√π)/2)=(√π)
Υ=0sin2(x)xxdx=x=t0sin2(t2)t3(2t)dt=20sin2(t2)t2dt=2{[1tsin2(t2)]001t×2sin(t2)2t)cos(t2)dt}=20sin(2t2)dt=2+sin(2t2)dt=2Im(+e2it2dt)+e(2i)t2dt=2it=y+ey2dy2i=π2eiπ4=π2eiπ4=π2(12i2)=π2iπ2Υ=2×π2=π

Leave a Reply

Your email address will not be published. Required fields are marked *