Menu Close

0-sin-px-x-dx-p-R-




Question Number 128314 by 676597498 last updated on 06/Jan/21
∫_0 ^( ∞) ((sin(px))/( (√x))) dx   ∀p∈R
0sin(px)xdxpR
Answered by Dwaipayan Shikari last updated on 06/Jan/21
∫_0 ^∞ ((sinpx)/( (√x)))dx=2∫_0 ^∞ sinpt^2 dt       x=t^2   =(1/i)∫_0 ^∞ e^(ipt^2 ) −e^(−ipt^2 ) dt              pt^2 =ij    pt^2 =−ig  =(1/(2p))∫_0 ^∞ (((ij)/p))^(−(1/2)) e^(−j) dj+(((−ig)/p))^(−(1/2)) e^(−g) dg  =(1/(2(√p)))Γ((1/2))(e^((π/4)i) +e^(−(π/4)i) )=(√(π/(2p)))
0sinpxxdx=20sinpt2dtx=t2=1i0eipt2eipt2dtpt2=ijpt2=ig=12p0(ijp)12ejdj+(igp)12egdg=12pΓ(12)(eπ4i+eπ4i)=π2p
Answered by mnjuly1970 last updated on 06/Jan/21
solution: Ψ=∫_0 ^( ∞) ((sin(px))/x^(1/2) )dx     Ψ=^(px=ξ) (1/p^(1/2) )∫_0 ^( ∞) ((sin(ξ))/ξ^(1/2) )dξ=           =(1/p^(1/2) ) ∗(π/(2Γ((1/2))sin((π/4)))) =(π/( (√p) 2(√π) ((√2)/2)))    = (π/( (√(2pπ))))  =((√(2pπ))/(2p))=(√(π/(2p)))
solution:Ψ=0sin(px)x12dxΨ=px=ξ1p120sin(ξ)ξ12dξ==1p12π2Γ(12)sin(π4)=πp2π22=π2pπ=2pπ2p=π2p

Leave a Reply

Your email address will not be published. Required fields are marked *