Menu Close

0-sin-x-ln-x-x-dx-pi-2-




Question Number 99228 by  M±th+et+s last updated on 19/Jun/20
  ∫_0 ^∞ ((sin(x)ln(x))/x)dx=((−γπ)/2)
0sin(x)ln(x)xdx=γπ2
Answered by maths mind last updated on 20/Jun/20
((ln(x))/x)=(∂/∂a)x^(a−1) ∣_(a=0)   ∫_0 ^(+∞) sin(x)x^(a−1) dx=f(a)  We wantlim_(a→0)  ((∂f(a))/∂a)  f(a)=Im ∫_0 ^(+∞) e^(ix) x^(a−1) dx  ix=−y⇒dx=idy  f(a)=Im ∫_0 ^(−i∞) e^(−y) i^a y^(a−1) dy  =Im i^a ∫_0 ^(+∞) e^(−y) y^(a−1) dy=sin((π/2)a)Γ(a)  f(a)=((sin((π/2)a)Γ(a)Γ(1−a))/(Γ(1−a)))⇔f(a)=((πsin((π/2)a))/(sin(πa)Γ(1−a)))...E  =(π/2).(1/(cos((π/2)a)Γ(1−a)))  f′(a)=−(π/2){((−(π/2)sin((π/2)a)Γ(1−a)−Γ′(1−a)cos(((πa)/2)))/((cos(((πa)/2))Γ(1−a))^2 ))}  f′(a)=−(π/2)((−Γ′(1))/1^2 )=((πΓ′(1))/2)=−(π/2)γ  E  Γ(1−a)Γ(a)=(π/(sin(πa)))=(π/2).(1/(cos(((πa)/2))sin((π/2)a)))
ln(x)x=axa1a=00+sin(x)xa1dx=f(a)Wewantlima0f(a)af(a)=Im0+eixxa1dxix=ydx=idyf(a)=Im0ieyiaya1dy=Imia0+eyya1dy=sin(π2a)Γ(a)f(a)=sin(π2a)Γ(a)Γ(1a)Γ(1a)f(a)=πsin(π2a)sin(πa)Γ(1a)E=π2.1cos(π2a)Γ(1a)f(a)=π2{π2sin(π2a)Γ(1a)Γ(1a)cos(πa2)(cos(πa2)Γ(1a))2}f(a)=π2Γ(1)12=πΓ(1)2=π2γEΓ(1a)Γ(a)=πsin(πa)=π2.1cos(πa2)sin(π2a)
Commented by  M±th+et+s last updated on 21/Jun/20
very good prof.math mind  thank you
verygoodprof.mathmindthankyou

Leave a Reply

Your email address will not be published. Required fields are marked *