Menu Close

0-sinx-2-1-x-4-dx-0-4009-prove-that-




Question Number 85999 by M±th+et£s last updated on 26/Mar/20
∫_0 ^∞ ((sinx^2 )/(1+x^4 ))dx=0.4009  prove that
0sinx21+x4dx=0.4009provethat
Commented by MJS last updated on 26/Mar/20
sin (x^2 ) or (sin x)^2 ?
sin(x2)or(sinx)2?
Commented by john santu last updated on 26/Mar/20
may be sin (x^2 )
maybesin(x2)
Commented by M±th+et£s last updated on 26/Mar/20
sin(x^2 )
sin(x2)
Commented by mathmax by abdo last updated on 26/Mar/20
I=∫_0 ^∞   ((sin(x^2 ))/(x^4 +1))dx ⇒2I = ∫_(−∞) ^(+∞)  ((sin(x^2 ))/(x^4  +1))dx =Im(∫_(−∞) ^(+∞)  (e^(ix^2 ) /(x^4  +1))dx)  letϕ(z)=(e^(iz^2 ) /(z^4  +1)) ⇒ϕ(z) =(e^(iz^2 ) /((z^2 −i)(z^2  +i)))  =(e^(iz^2 ) /((z−(√i))(z+(√i))(z−(√(−i)))(z+(√(−i))))) =(e^(iz^2 ) /((z−e^((iπ)/4) )(z+e^((iπ)/4) )(z−e^(−((iπ)/4)) )(z+e^(−((iπ)/4)) )))  residus theorem give ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{Res(ϕ,e^((iπ)/4) )+Res(ϕ,−e^(−((iπ)/4)) )}  Res(ϕ,e^((iπ)/4) ) =(e^(ie^((iπ)/2) ) /(2e^((iπ)/4) (2i))) =((e^(−1)  e^(−((iπ)/4)) )/(4i))  Res(ϕ,−e^(−((iπ)/4)) ) = (e^(i(−i)) /(−2e^(−((iπ)/4)) (−2i))) =((e e^((iπ)/4) )/(4i)) ⇒  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ{  (e^(−1) /(4i))e^(−((iπ)/4))   +(e/(4i))e^((iπ)/4) }  =(π/2){  e^(−1) ((1/( (√2)))−(i/( (√2)))) +e((1/( (√2))) +(i/( (√2))))}  =(π/2){ ((e+e^(−1) )/( (√2))) +i(((e−e^(−1) )/( (√2))))} ⇒2I =(π/(2(√2)))(e−e^(−1) ) ⇒  I =(π/(4(√2)))(e−e^(−1) )
I=0sin(x2)x4+1dx2I=+sin(x2)x4+1dx=Im(+eix2x4+1dx)letφ(z)=eiz2z4+1φ(z)=eiz2(z2i)(z2+i)=eiz2(zi)(z+i)(zi)(z+i)=eiz2(zeiπ4)(z+eiπ4)(zeiπ4)(z+eiπ4)residustheoremgive+φ(z)dz=2iπ{Res(φ,eiπ4)+Res(φ,eiπ4)}Res(φ,eiπ4)=eieiπ22eiπ4(2i)=e1eiπ44iRes(φ,eiπ4)=ei(i)2eiπ4(2i)=eeiπ44i+φ(z)dz=2iπ{e14ieiπ4+e4ieiπ4}=π2{e1(12i2)+e(12+i2)}=π2{e+e12+i(ee12)}2I=π22(ee1)I=π42(ee1)
Commented by mind is power last updated on 27/Mar/20
Sir   for θ∈[(π/2),π]   C=Re^(iθ)   (e^(iz^2 ) /(1+z^4 ))=(e^(iR^2 (cos(2θ)+isin(2θ))) /(1+R^4 e^(4iθ) ))=(e^(−R^2 sin(2θ)) /(1+R^4 e^(4iθ) ))  ,sin(2θ)<0  lim_(R→∞) ∫_C (e^(iz^2 ) /(1+z^4 ))dz  #0
Sirforθ[π2,π]C=Reiθeiz21+z4=eiR2(cos(2θ)+isin(2θ))1+R4e4iθ=eR2sin(2θ)1+R4e4iθ,sin(2θ)<0You can't use 'macro parameter character #' in math mode

Leave a Reply

Your email address will not be published. Required fields are marked *