Menu Close

0-sinx-2n-1-x-dx-pi-2-2n-1-2n-n-




Question Number 152141 by Ar Brandon last updated on 26/Aug/21
∫_0 ^(+∞) (((sinx)^(2n+1) )/x)dx=(π/2^(2n+1) ) (((2n)),(n) )
0+(sinx)2n+1xdx=π22n+1(2nn)
Answered by Olaf_Thorendsen last updated on 26/Aug/21
I_n  = ∫_0 ^(+∞) ((sin^(2n+1) x)/x) dx  Let f(x) = sin^(2n) x  I_n  = ∫_0 ^(+∞) ((sinx)/x)f(x) dx    f is a π−periodic function. We can  apply the Lobachevsky−Dirchlet  integral formula :  ∫_0 ^(+∞) ((sinx)/x)f(x) dx = ∫_0 ^(π/2) f(x)dx  ⇒ I_n  = ∫_0 ^(π/2) sin^(2n) x dx = W_(2n)  = (π/2).(((2n)!)/((2^n n!)^2 ))  (W_(2n)  : integral of Wallis)  I_n  = (π/2^(2n+1) ).(((2n)!)/(n!n!)) = (π/2^(2n+1) )C_n ^(2n)
In=0+sin2n+1xxdxLetf(x)=sin2nxIn=0+sinxxf(x)dxfisaπperiodicfunction.WecanapplytheLobachevskyDirchletintegralformula:0+sinxxf(x)dx=0π2f(x)dxIn=0π2sin2nxdx=W2n=π2.(2n)!(2nn!)2(W2n:integralofWallis)In=π22n+1.(2n)!n!n!=π22n+1Cn2n
Commented by Ar Brandon last updated on 26/Aug/21
Grac_ξ ias sen^  or !
Graext\ccciassenor!
Commented by puissant last updated on 26/Aug/21
hum
hum
Answered by Kamel last updated on 26/Aug/21
sin^(2n) (x)=Σ_(k=0) ^(2n) (((−1)^(2n−k) (−1)^n )/2^(2n) )C_(2n) ^k e^(ikx) e^(−i(2n−k)ix)                     =(1/2^(2n) )C_(2n) ^n +Σ_(k=0) ^(n−1) (((−1)^(n+k) )/2^(2n) )C_(2n) ^k e^(ikx) e^(−(2n−k)ix) +Σ_(k=0) ^(n−1) (((−1)^(n+k) )/2^(2n) )C_(2n) ^k e^(i(2n−k)x) e^(−ikx)                     =(1/2^(2n) )C_(2n) ^n +Σ_(k=0) ^(n−1) (((−1)^(n+k) )/2^(2n) )C_(2n) ^k (e^(−(2n−2k)ix) +e^(i(2n−2k)x) )                    =(1/2^(2n) )C_(2n) ^n +Σ_(k=0) ^(n−1) (((−1)^(n+k) )/2^(2n−1) )C_(2n) ^k cos(2n−2k)   ∴ ∫_0 ^(+∞) ((sin^(2n+1) (x))/x)dx =(1/2^(2n) )C_(2n) ^n ∫_0 ^(+∞) ((sin(x))/x)dx+Σ_(k=0) ^(n−1) (((−1)^(n+k) )/2^(2n) )C_(2n) ^k ∫_0 ^(+∞) ((sin((2n−2k+1)x)−sin((2n−2k−1)x))/x)dx   We have:     2n−2k+1>0, 2n−2k−1>0 ∀k=0,n−1^(−) , n≥1     ∴ ∫_0 ^(+∞) ((sin(ax))/x)dx=^(a>0) (π/2)  So  :  ∫_0 ^(+∞) ((sin^(2n+1) (x))/x)dx=(π/2^(2n+1) ) (((2n)),((  n)) )
sin2n(x)=2nk=0(1)2nk(1)n22nC2nkeikxei(2nk)ix=122nC2nn+n1k=0(1)n+k22nC2nkeikxe(2nk)ix+n1k=0(1)n+k22nC2nkei(2nk)xeikx=122nC2nn+n1k=0(1)n+k22nC2nk(e(2n2k)ix+ei(2n2k)x)=122nC2nn+n1k=0(1)n+k22n1C2nkcos(2n2k)0+sin2n+1(x)xdx=122nC2nn0+sin(x)xdx+n1k=0(1)n+k22nC2nk0+sin((2n2k+1)x)sin((2n2k1)x)xdxWehave:2n2k+1>0,2n2k1>0k=0,n1,n10+sin(ax)xdx=a>0π2So:0+sin2n+1(x)xdx=π22n+1(2nn)
Commented by Ar Brandon last updated on 26/Aug/21
Oh my! Thanks Sir
Ohmy!ThanksSir

Leave a Reply

Your email address will not be published. Required fields are marked *