Menu Close

0-sinx-p-dx-0-sinx-p-x-q-dx-collected-question-




Question Number 124608 by TANMAY PANACEA last updated on 04/Dec/20
∫_0 ^∞ sinx^p  dx  ∫_0 ^∞ ((sinx^p )/x^q )dx  collected question
0sinxpdx0sinxpxqdxcollectedquestion
Answered by Dwaipayan Shikari last updated on 04/Dec/20
∫_0 ^∞ sinx^p dx  =(1/(2i))∫_0 ^∞ e^(ix^p ) −e^(−ix^p ) dx               x^p =u  =(1/(2ip))∫_0 ^∞ (u)^((1−p)/p) e^(iu) −(1/(2ip))∫_0 ^∞ u^((1−p)/p) e^(−iu) dt          iu=−Ψ     iu=ϕ  =−(1/(2p))∫_0 ^∞ (((−Ψ)/i))^((1−p)/p) e^(−Ψ) dΨ + (1/(2p))∫_0 ^∞ ((ϕ/i))^((1−p)/p) e^(−ϕ) dϕ  =(((i)^((1/p)−1) )/(2p))Γ((1/p))+(((−i)^((1/p)−1) )/(2p))Γ((1/p))  (1/(2p))Γ((1/p))((1/i)(e^((π/(2p))i) −e^(−(π/(2p))i) ))=((Γ((1/p))sin((π/(2p))))/p)=Γ((1/p)+1)sin((π/(2p)))
0sinxpdx=12i0eixpeixpdxxp=u=12ip0(u)1ppeiu12ip0u1ppeiudtiu=Ψiu=φ=12p0(Ψi)1ppeΨdΨ+12p0(φi)1ppeφdφ=(i)1p12pΓ(1p)+(i)1p12pΓ(1p)12pΓ(1p)(1i(eπ2pieπ2pi))=Γ(1p)sin(π2p)p=Γ(1p+1)sin(π2p)
Commented by TANMAY PANACEA last updated on 04/Dec/20
excellent
excellent
Answered by mathmax by abdo last updated on 04/Dec/20
∫_0 ^∞  ((sin(x^p ))/x^q )dx =−Im(∫_0 ^∞  (e^(−ix^p ) /x^q )dx) but  ∫_0 ^∞  (e^(−ix^p ) /x^q )dx =_(ix^p =t) (−i)^p    ∫_0 ^∞     (e^(−t) /(((−it)^(1/p) )^q )) (1/p)t^((1/p)−1)  dt  =(1/p)e^(−((ipπ)/2))  ×∫_0 ^∞ (t^((1/p)−1) /((e^(−((iπ)/2)) )^(q/p)  t^(q/p) ))e^(−t) dt =(1/p)e^(−((ipπ)/2))  e^((iqπ)/(2p))  ∫_0 ^∞  t^((1/p)−(q/p)−1)  e^(−t)  dt  =(1/p) e^(i{((qπ)/(2p))−((pπ)/2)})   Γ(((1−q)/p))   (so o<q<1)  =(1/p){cos(((qπ)/(2p))−((pπ)/2))+isin(((qπ)/(2p))−((pπ)/2))}Γ(((1−q)/p)) ⇒  ∫_0 ^∞   ((sin(x^p ))/x^q )dx =−(1/p)sin(((qπ)/(2p))−((pπ)/2))Γ(((1−q)/p))  =(1/p)sin(((pπ)/2)−((qπ)/(2p)))×Γ(((1−q)/p))
0sin(xp)xqdx=Im(0eixpxqdx)but0eixpxqdx=ixp=t(i)p0et((it)1p)q1pt1p1dt=1peipπ2×0t1p1(eiπ2)qptqpetdt=1peipπ2eiqπ2p0t1pqp1etdt=1pei{qπ2ppπ2}Γ(1qp)(soo<q<1)=1p{cos(qπ2ppπ2)+isin(qπ2ppπ2)}Γ(1qp)0sin(xp)xqdx=1psin(qπ2ppπ2)Γ(1qp)=1psin(pπ2qπ2p)×Γ(1qp)

Leave a Reply

Your email address will not be published. Required fields are marked *