0-sinx-p-dx-0-sinx-p-x-q-dx-collected-question- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 124608 by TANMAY PANACEA last updated on 04/Dec/20 ∫0∞sinxpdx∫0∞sinxpxqdxcollectedquestion Answered by Dwaipayan Shikari last updated on 04/Dec/20 ∫0∞sinxpdx=12i∫0∞eixp−e−ixpdxxp=u=12ip∫0∞(u)1−ppeiu−12ip∫0∞u1−ppe−iudtiu=−Ψiu=φ=−12p∫0∞(−Ψi)1−ppe−ΨdΨ+12p∫0∞(φi)1−ppe−φdφ=(i)1p−12pΓ(1p)+(−i)1p−12pΓ(1p)12pΓ(1p)(1i(eπ2pi−e−π2pi))=Γ(1p)sin(π2p)p=Γ(1p+1)sin(π2p) Commented by TANMAY PANACEA last updated on 04/Dec/20 excellent Answered by mathmax by abdo last updated on 04/Dec/20 ∫0∞sin(xp)xqdx=−Im(∫0∞e−ixpxqdx)but∫0∞e−ixpxqdx=ixp=t(−i)p∫0∞e−t((−it)1p)q1pt1p−1dt=1pe−ipπ2×∫0∞t1p−1(e−iπ2)qptqpe−tdt=1pe−ipπ2eiqπ2p∫0∞t1p−qp−1e−tdt=1pei{qπ2p−pπ2}Γ(1−qp)(soo<q<1)=1p{cos(qπ2p−pπ2)+isin(qπ2p−pπ2)}Γ(1−qp)⇒∫0∞sin(xp)xqdx=−1psin(qπ2p−pπ2)Γ(1−qp)=1psin(pπ2−qπ2p)×Γ(1−qp) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: dx-x-3-1-2-Next Next post: Question-59074 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.