Menu Close

0-t-a-1-1-t-dt-pi-sin-pia-please-prove-that-




Question Number 45075 by arvinddayama01@gmail.com last updated on 08/Oct/18
∫_0 ^∞ (t^(a−1) /(1+t))dt=(π/(sin(πa)))     please prove that
0ta11+tdt=πsin(πa)pleaseprovethat
Commented by abdo.msup.com last updated on 08/Oct/18
Commented by maxmathsup by imad last updated on 08/Oct/18
let ntegrate the complex funtion f(z) =(z^(a−1) /(1+z)) on this contour shown  with 0<a<1  residus theorem give  ∫_Γ f(z)dz + ∫_(AB)  f(z)dz + ∫_γ f(z)dz + ∫_(A^′ B^′ )   f(z)dz =2iπ Res(f,−1)   on Γ  z =R e^(iθ)     ⇒ ∫_Γ f(z)dz  = ∫_0 ^(2π) f(R e^(iθ) )Ri e^(iθ) dθ  = ∫_0 ^(2π)  (((R e^(iθ) )^(a−1) )/(1+Re^(iθ) )) R i e^(iθ) dθ  ⇒ ∫_Γ ∣f(z)∣dz_(R→+∞) →0   on AB  z =t e^(i2π) ⇒ ∫_(AB) f(z)dz = ∫_R ^r   (((t e^(i2π) )^(a−1) )/(1+t))dt_(r→0 andR→+∞) →−∫_0 ^(+∞)   (t^(a−1) /(1+t)) e^(i2π(a−1)) dt  on γ  z =r e^(iθ)     and ∫_γ   f(z)dz =∫_0 ^(2π)  f(r e^(iθ) )dθ →0 when r→0  on A^′ B^′    z =t   and ∫_(A^′ B^′ )    f(z)dz =∫_r ^R   (t^(a−1) /(1+t)) dt →∫_0 ^∞    (t^(a−1) /(1+t))dt (r→0 and R→+∞)  so we get ∫_0 ^∞   (t^(a−1) /(1+t))dt −e^(i2π(a−1)) ∫_0 ^∞    (t^(a−1) /(1+t)) dt =2iπ Res(f,−1) ⇒  (1−e^(i2πa) ) ∫_0 ^∞   (t^(a−1) /(1+t))dt  =2iπ (−1)^(a−1)  ⇒∫_0 ^∞   (t^(a−1) /(1+t))dt =((2iπe^(iπ(a−1)) )/(1−e^(i2πa) ))  = ((2iπ e^(−iπa)  e^(iπ(a−1)) )/(e^(−iπa) (1−e^(i2πa) ) )) = ((2iπ (−1))/(e^(iπa) −e^(iπa) )) = ((2iπ)/(e^(iπa) −e^(−iπa) )) =((2iπ)/(2i sin(πa))) =(π/(sin(πa))) ⇒  we have proved that for 0<a<1    ∫_0 ^∞    (t^(a−1) /(1+t)) dt =(π/(sin(πa))) .
letntegratethecomplexfuntionf(z)=za11+zonthiscontourshownwith0<a<1residustheoremgiveΓf(z)dz+ABf(z)dz+γf(z)dz+ABf(z)dz=2iπRes(f,1)onΓz=ReiθΓf(z)dz=02πf(Reiθ)Rieiθdθ=02π(Reiθ)a11+ReiθRieiθdθΓf(z)dzR+0onABz=tei2πABf(z)dz=Rr(tei2π)a11+tdtr0andR+0+ta11+tei2π(a1)dtonγz=reiθandγf(z)dz=02πf(reiθ)dθ0whenr0onABz=tandABf(z)dz=rRta11+tdt0ta11+tdt(r0andR+)soweget0ta11+tdtei2π(a1)0ta11+tdt=2iπRes(f,1)(1ei2πa)0ta11+tdt=2iπ(1)a10ta11+tdt=2iπeiπ(a1)1ei2πa=2iπeiπaeiπ(a1)eiπa(1ei2πa)=2iπ(1)eiπaeiπa=2iπeiπaeiπa=2iπ2isin(πa)=πsin(πa)wehaveprovedthatfor0<a<10ta11+tdt=πsin(πa).
Answered by tanmay.chaudhury50@gmail.com last updated on 08/Oct/18
t=tan^2 θ  dt=2tanθsec^2 θ dθ  ∫_0 ^(π/2) (((tan^2 θ)^(a−1) )/(sec^2 θ))×2tanθsec^2 θdθ  ∫_0 ^(π/2) ((sin^(2a−2) θ)/(cos^(2a−2) θ))×2((sinθ)/(cosθ))dθ  ∫_0 ^(π/2) 2sin^(2a−1) ×cos^(−2a+1) θ  2a−1=2p−1    p=a  2q−1=−2a+1  2q=−2a+2    q=−a+1  ∫_0 ^(π/2) 2sin^(2a−1) cos^(2(1−a)−1) dθ    formula ∫_0 ^(π/2) 2sin^(2p−1) θcos^(2q−1) θ dθ  =((⌈(p)⌈(q))/(⌈(p+q)))      ((⌈a)⌈1−a))/(⌈(a+1−a)))=⌈(a)⌈(1−a)=(π/(sin(πa))) proved      formula  ⌈(p)⌈(1−p)=(π/(sinpπ))
t=tan2θdt=2tanθsec2θdθ0π2(tan2θ)a1sec2θ×2tanθsec2θdθ0π2sin2a2θcos2a2θ×2sinθcosθdθ0π22sin2a1×cos2a+1θ2a1=2p1p=a2q1=2a+12q=2a+2q=a+10π22sin2a1cos2(1a)1dθformula0π22sin2p1θcos2q1θdθ=(p)(q)(p+q)a)1a)(a+1a)=(a)(1a)=πsin(πa)provedformula(p)(1p)=πsinpπ
Commented by arvinddayama01@gmail.com last updated on 09/Oct/18
thanks sir
thankssir
Commented by tanmay.chaudhury50@gmail.com last updated on 09/Oct/18
most welcome...
mostwelcome

Leave a Reply

Your email address will not be published. Required fields are marked *