Menu Close

0-tan-a-2-cos-2-b-2-sin-2-d-




Question Number 35949 by ajfour last updated on 26/May/18
∫_0 ^(  α) ((tan θ)/( (√(a^2 cos^2 θ−b^2 sin^2 θ)))) dθ = ?
0αtanθa2cos2θb2sin2θdθ=?
Commented by abdo mathsup 649 cc last updated on 26/May/18
let put I_α  = ∫_0 ^α    ((tanθ)/( (√(a^2 cos^2 θ−b^2 sin^2 θ))))dθ   we hsve the formula  1+tan^2 θ =(1/(cos^2 θ)) ⇒  cos^2 θ = (1/(1+tan^2 θ))  and  sin^2 θ =1−(1/(1+tan^2 θ)) ⇒  a^2 cos^2 θ −b^2 sin^2 θ  = (a^2 /(1+tan^2 θ)) −b^2   ((tan^2 θ)/(1+tan^2 θ)) = ((a^2  −b^2  tan^2 θ)/(1+tan^2 θ)) ⇒  I_α  = ∫_0 ^α  ((tanθ(√(1+tan^2 θ)))/( (√(a^2  −b^2 tan^2 θ)))) dθ  changement tanθ =t  give I_α  =  ∫_0 ^(tanα)     ((t(√(1+t^2 )))/( (√(a^2  −b^2 t^2 )))) (dt/(1+t^2 ))  = ∫_0 ^(tan(α))     (t/( (√(1+t^2 ))))   (dt/( (√(a^2  −b^2 t^2 ))))  by parts  u^′  = (t/( (√(1+t^2 )))) and  v = (1/( (√(a^2  −b^2 t^2 ))))    I_α   = [ ((√(1+t^2 ))/( (√(a^2  −b^2 t^2 ))))]_0 ^(tan(α)) −∫_0 ^(tan(α))  (√(1+t^2 )) (−(1/2)−2b^2 t)(a^2  −b^2 t^2 )^(−(3/2)) dt  =((√(1+tan^2 α))/( (√(a^2  −b^2  tan^2 α)))) − (1/(∣a∣))  −b^2  ∫_0 ^(tan(α))  (√(1+t^2 ))( a^2  −b^2 t^2 )^(−(3/2)) dt  let J = ∫_0 ^(tan(α))  (√(1+t^2 )) (a^2  −b^2 t^2 )^(−(3/2)) dt  =c ∫_0 ^(tan(α))     ((√(1+t^2 ))/((a^2   −b^2 t^2 )(√(a^2  −b^2 t^2 ))))dt  ...be continued ...
letputIα=0αtanθa2cos2θb2sin2θdθwehsvetheformula1+tan2θ=1cos2θcos2θ=11+tan2θandsin2θ=111+tan2θa2cos2θb2sin2θ=a21+tan2θb2tan2θ1+tan2θ=a2b2tan2θ1+tan2θIα=0αtanθ1+tan2θa2b2tan2θdθchangementtanθ=tgiveIα=0tanαt1+t2a2b2t2dt1+t2=0tan(α)t1+t2dta2b2t2bypartsu=t1+t2andv=1a2b2t2Iα=[1+t2a2b2t2]0tan(α)0tan(α)1+t2(122b2t)(a2b2t2)32dt=1+tan2αa2b2tan2α1ab20tan(α)1+t2(a2b2t2)32dtletJ=0tan(α)1+t2(a2b2t2)32dt=c0tan(α)1+t2(a2b2t2)a2b2t2dtbecontinued
Answered by tanmay.chaudhury50@gmail.com last updated on 26/May/18
∫_0 ^α ((tanθ.secθ)/( (√(a^2 −b^2 tan^2 θ))))dθ  ∫_0 ^α ((tanθsecθ)/( (√(a^2 −b^2 sec^2 θ+b^2 ))))dθ  (1/b)∫((d(secθ))/( (√(((a^2 +b^2 )/b^2 )−sec^2 θ))))  now use formula ∫(dx/( (√(A^2 −X^2 ))))  (1/b)×∣sin^(−1) (((secθ)/( (√((a^2 +b^2 )/b^2 )))))∣_0 ^α   (1/b)×{sin^(−1) (((secα)/( (√((a^2 +b^2 )/b^2 )))))−sin^(−1) ((1/((√(a^2 +b^2 ))/b^2 )))}
0αtanθ.secθa2b2tan2θdθ0αtanθsecθa2b2sec2θ+b2dθ1bd(secθ)a2+b2b2sec2θnowuseformuladxA2X21b×sin1(secθa2+b2b2)0α1b×{sin1(secαa2+b2b2)sin1(1a2+b2b2)}
Commented by ajfour last updated on 26/May/18
Thanks.
Thanks.
Commented by tanmay.chaudhury50@gmail.com last updated on 26/May/18
its ok...
itsok
Commented by ajfour last updated on 26/May/18
i applied your technique again  and corrected my answer to  Q.35940 . Thanks again.
iappliedyourtechniqueagainandcorrectedmyanswertoQ.35940.Thanksagain.

Leave a Reply

Your email address will not be published. Required fields are marked *