Question Number 35949 by ajfour last updated on 26/May/18

Commented by abdo mathsup 649 cc last updated on 26/May/18
![let put I_α = ∫_0 ^α ((tanθ)/( (√(a^2 cos^2 θ−b^2 sin^2 θ))))dθ we hsve the formula 1+tan^2 θ =(1/(cos^2 θ)) ⇒ cos^2 θ = (1/(1+tan^2 θ)) and sin^2 θ =1−(1/(1+tan^2 θ)) ⇒ a^2 cos^2 θ −b^2 sin^2 θ = (a^2 /(1+tan^2 θ)) −b^2 ((tan^2 θ)/(1+tan^2 θ)) = ((a^2 −b^2 tan^2 θ)/(1+tan^2 θ)) ⇒ I_α = ∫_0 ^α ((tanθ(√(1+tan^2 θ)))/( (√(a^2 −b^2 tan^2 θ)))) dθ changement tanθ =t give I_α = ∫_0 ^(tanα) ((t(√(1+t^2 )))/( (√(a^2 −b^2 t^2 )))) (dt/(1+t^2 )) = ∫_0 ^(tan(α)) (t/( (√(1+t^2 )))) (dt/( (√(a^2 −b^2 t^2 )))) by parts u^′ = (t/( (√(1+t^2 )))) and v = (1/( (√(a^2 −b^2 t^2 )))) I_α = [ ((√(1+t^2 ))/( (√(a^2 −b^2 t^2 ))))]_0 ^(tan(α)) −∫_0 ^(tan(α)) (√(1+t^2 )) (−(1/2)−2b^2 t)(a^2 −b^2 t^2 )^(−(3/2)) dt =((√(1+tan^2 α))/( (√(a^2 −b^2 tan^2 α)))) − (1/(∣a∣)) −b^2 ∫_0 ^(tan(α)) (√(1+t^2 ))( a^2 −b^2 t^2 )^(−(3/2)) dt let J = ∫_0 ^(tan(α)) (√(1+t^2 )) (a^2 −b^2 t^2 )^(−(3/2)) dt =c ∫_0 ^(tan(α)) ((√(1+t^2 ))/((a^2 −b^2 t^2 )(√(a^2 −b^2 t^2 ))))dt ...be continued ...](https://www.tinkutara.com/question/Q35970.png)
Answered by tanmay.chaudhury50@gmail.com last updated on 26/May/18

Commented by ajfour last updated on 26/May/18

Commented by tanmay.chaudhury50@gmail.com last updated on 26/May/18

Commented by ajfour last updated on 26/May/18
