Menu Close

0-u-2-u-8-2u-4-1-du-




Question Number 144187 by ArielVyny last updated on 22/Jun/21
∫_0 ^(+∞) (u^2 /(u^8 +2u^4 +1))du
$$\int_{\mathrm{0}} ^{+\infty} \frac{{u}^{\mathrm{2}} }{{u}^{\mathrm{8}} +\mathrm{2}{u}^{\mathrm{4}} +\mathrm{1}}{du} \\ $$
Answered by Ar Brandon last updated on 22/Jun/21
I=∫_0 ^∞ (u^2 /(u^8 +2u^4 +1))du=∫_0 ^∞ (u^2 /((u^4 +1)^2 ))du    =(1/4)∫_0 ^∞ (x^(−(1/4)) /((x+1)^2 ))dx=(1/4)β((3/4),(5/4))=(1/(16))β((3/4),(1/4))    =(1/(16))∙(π/(sin((π/4))))=(((√2)π)/(16))
$$\mathrm{I}=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{u}^{\mathrm{2}} }{\mathrm{u}^{\mathrm{8}} +\mathrm{2u}^{\mathrm{4}} +\mathrm{1}}\mathrm{du}=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{u}^{\mathrm{2}} }{\left(\mathrm{u}^{\mathrm{4}} +\mathrm{1}\right)^{\mathrm{2}} }\mathrm{du} \\ $$$$\:\:=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{x}^{−\frac{\mathrm{1}}{\mathrm{4}}} }{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dx}=\frac{\mathrm{1}}{\mathrm{4}}\beta\left(\frac{\mathrm{3}}{\mathrm{4}},\frac{\mathrm{5}}{\mathrm{4}}\right)=\frac{\mathrm{1}}{\mathrm{16}}\beta\left(\frac{\mathrm{3}}{\mathrm{4}},\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$$$\:\:=\frac{\mathrm{1}}{\mathrm{16}}\centerdot\frac{\pi}{\mathrm{sin}\left(\frac{\pi}{\mathrm{4}}\right)}=\frac{\sqrt{\mathrm{2}}\pi}{\mathrm{16}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *