Menu Close

0-x-1-x-2-sin-2-x-dx-




Question Number 126904 by Mustafa2020 last updated on 25/Dec/20
∫_0 ^∞ (x/(1+x^2 sin^2 x))dx
$$\int_{\mathrm{0}} ^{\infty} \frac{{x}}{\mathrm{1}+{x}^{\mathrm{2}} {sin}^{\mathrm{2}} {x}}{dx} \\ $$
Answered by mindispower last updated on 25/Dec/20
≥Σ∫_(2kπ) ^(2kπ+(π/6)) (x/(1+x^2 sin^2 (x)))dx≥Σ_(k≥0) (((2kπ))/(1+(2kπ+(π/6))^2 .(1/4)))  wich diverge ∼(1/(2πk)) harmonic serie
$$\geqslant\Sigma\int_{\mathrm{2}{k}\pi} ^{\mathrm{2}{k}\pi+\frac{\pi}{\mathrm{6}}} \frac{{x}}{\mathrm{1}+{x}^{\mathrm{2}} {sin}^{\mathrm{2}} \left({x}\right)}{dx}\geqslant\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\left(\mathrm{2}{k}\pi\right)}{\mathrm{1}+\left(\mathrm{2}{k}\pi+\frac{\pi}{\mathrm{6}}\right)^{\mathrm{2}} .\frac{\mathrm{1}}{\mathrm{4}}} \\ $$$${wich}\:{diverge}\:\sim\frac{\mathrm{1}}{\mathrm{2}\pi{k}}\:{harmonic}\:{serie} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *