Menu Close

0-x-3-e-2x-e-x-




Question Number 80160 by peter frank last updated on 31/Jan/20
∫_0 ^∞ (x^3 /(e^(2x) −e^x ))
0x3e2xex
Commented by mathmax by abdo last updated on 31/Jan/20
I=∫_0 ^∞   (x^3 /(e^(2x) −e^x ))dx ⇒I=∫_0 ^∞   ((e^(−2x)  x^3 )/(1−e^(−x) ))dx =∫_0 ^∞ e^(−2x) x^3 (Σ_(n=0) ^∞  e^(−nx) )  =Σ_(n=0) ^∞    ∫_0 ^∞  x^3  e^(−(n+2)x) dx =_((n+2)x=t)   Σ_(n=0) ^∞ ∫_0 ^∞  (t^3 /((n+2)^3 )) e^(−t) (dt/((n+2)))  =Σ_(n=0) ^∞  (1/((n+2)^4 )) ∫_0 ^∞  t^3  e^(−t)  dt let rememer Γ(x)=∫_0 ^∞  t^(x−1)  e^(−t)  dt  ⇒I =Γ(4)Σ_(n=0) ^∞  (1/((n+2)^4 )) =Γ(4)Σ_(n=2) ^∞  (1/n^4 )  Γ(4)=3!=6     and Σ_(n=2) ^∞  (1/n^4 ) =Σ_(n=1) ^∞  (1/n^4 ) −1 =(π^4 /(90))−1 ⇒  I=6((π^4 /(90))−1) =((3.2)/(3.30))π^4 −6 =(π^4 /(15)) −6
I=0x3e2xexdxI=0e2xx31exdx=0e2xx3(n=0enx)=n=00x3e(n+2)xdx=(n+2)x=tn=00t3(n+2)3etdt(n+2)=n=01(n+2)40t3etdtletrememerΓ(x)=0tx1etdtI=Γ(4)n=01(n+2)4=Γ(4)n=21n4Γ(4)=3!=6andn=21n4=n=11n41=π4901I=6(π4901)=3.23.30π46=π4156

Leave a Reply

Your email address will not be published. Required fields are marked *