Menu Close

0-x-7-1-x-10-dx-




Question Number 122862 by Dwaipayan Shikari last updated on 20/Nov/20
∫_0 ^∞ (x^7 /((1+x)^(10) ))dx
0x7(1+x)10dx
Answered by MJS_new last updated on 20/Nov/20
=∫_0 ^∞ Σ_(j=3) ^(10) (((−1)^(j+1)  ((7),((j−3)) ))/((x+1)^j ))=[Σ_(j=3) ^(10) (((−1)^(j+1)  ((7),((j−3)) ))/((j−1)(x+1)^(j−1) ))]_0 ^∞ =  =−Σ_(j=3) ^(10) (((−1)^(j+1)  ((7),((j−3)) ))/((j−1)))=  =(1/2)−(7/3)+((21)/4)−7+((35)/6)−3+(7/8)−(1/9)=(1/(72))
=010j=3(1)j+1(7j3)(x+1)j=[10j=3(1)j+1(7j3)(j1)(x+1)j1]0==10j=3(1)j+1(7j3)(j1)==1273+2147+3563+7819=172
Commented by Dwaipayan Shikari last updated on 20/Nov/20
Great way sir!
Greatwaysir!
Commented by Dwaipayan Shikari last updated on 20/Nov/20
∫_0 ^∞ (x^7 /((1+x)^(10) ))dx         (x/(1+x))=t⇒(1/((1+x)^2 ))=(dt/dx)  and  1+x=(1/(1−t))  =∫_0 ^1 (x^7 /((1+x)^8 ))dt=∫_0 ^1 t^7 (1−t)dt  =β(8,2)=((Γ(8)Γ(2))/(Γ(10)))=((7!)/(9!))=(1/(72))
0x7(1+x)10dxx1+x=t1(1+x)2=dtdxand1+x=11t=01x7(1+x)8dt=01t7(1t)dt=β(8,2)=Γ(8)Γ(2)Γ(10)=7!9!=172

Leave a Reply

Your email address will not be published. Required fields are marked *