Menu Close

0-x-e-x-1-dx-




Question Number 150992 by talminator2856791 last updated on 17/Aug/21
                          ∫_0 ^( ∞)  (x/(e^x −1)) dx = ?
$$\: \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{{x}}{{e}^{{x}} −\mathrm{1}}\:{dx}\:=\:? \\ $$$$\: \\ $$$$\: \\ $$
Commented by puissant last updated on 17/Aug/21
=∫_0 ^∞ ((xe^(−x) )/(1−e^(−x) ))dx  =Σ_(n=0) ^∞ (1/((n+1)^2 ))  = Σ_(n=1) ^∞ (1/n^2 ) = ζ(2)=(π^2 /6) ★
$$=\int_{\mathrm{0}} ^{\infty} \frac{{xe}^{−{x}} }{\mathrm{1}−{e}^{−{x}} }{dx} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:=\:\zeta\left(\mathrm{2}\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:\bigstar \\ $$
Answered by Ar Brandon last updated on 17/Aug/21
∫_0 ^∞ (x/(e^x −1))dx=Γ(2)ζ(2)=(π^2 /6)
$$\int_{\mathrm{0}} ^{\infty} \frac{{x}}{{e}^{{x}} −\mathrm{1}}{dx}=\Gamma\left(\mathrm{2}\right)\zeta\left(\mathrm{2}\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$
Answered by qaz last updated on 17/Aug/21
∫_0 ^∞ (x/(e^x −1))dx=∫_0 ^∞ ((xe^(−x) )/(1−e^(−x) ))dx=Σ_(n=0) ^∞ ∫_0 ^∞ xe^(−(n+1)x) dx=Σ_(n=0) ^∞ (1/((n+1)^2 ))=(π^2 /6)
$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{x}}{\mathrm{e}^{\mathrm{x}} −\mathrm{1}}\mathrm{dx}=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{xe}^{−\mathrm{x}} }{\mathrm{1}−\mathrm{e}^{−\mathrm{x}} }\mathrm{dx}=\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\infty} \mathrm{xe}^{−\left(\mathrm{n}+\mathrm{1}\right)\mathrm{x}} \mathrm{dx}=\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{2}} }=\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *