Menu Close

0-x-e-x-4-dx-




Question Number 126788 by john_santu last updated on 24/Dec/20
 σ = ∫_0 ^(     ∞) (√x) e^(−x/4)  dx = ?
$$\:\sigma\:=\:\underset{\mathrm{0}} {\overset{\:\:\:\:\:\infty} {\int}}\sqrt{{x}}\:{e}^{−{x}/\mathrm{4}} \:{dx}\:=\:?\: \\ $$
Answered by Ar Brandon last updated on 24/Dec/20
x=u^2  ⇒ dx=2udu  σ=2∫_0 ^∞ u^2 e^(−u^2 /4) du  e^(−u^2 /4) =t ⇒ −(1/2)ue^(−u^2 /4) du=dt  σ=−4∫_0 ^∞ u∙(−(1/2)ue^(−u^2 /4) )du     =−4{ue^(−u^2 /4) −∫e^(−u^2 /4) du}_0 ^∞      =4∫_0 ^∞ e^(−u^2 /4) du   { ((I=∫_0 ^∞ e^(−x^2 /4) dx)),((I=∫_0 ^∞ e^(−y^2 /4) dy)) :}   I^2 =∫_0 ^∞ ∫_0 ^∞ e^(−(x^2 +y^2 )/4) dxdy       =∫_0 ^(π/2) ∫_0 ^∞ re^(−r^2 /4) drdθ=−2∫_0 ^(π/2) ∫_0 ^∞ −(1/2)re^(−r^2 /4) drdθ       =−2[(θ/1)]_0 ^(π/2) [e^(−r^2 /4) ]_0 ^∞ =−((2/1))((π/2))(0−1)=π  I=(√π)  σ=4I=4(√π)
$$\mathrm{x}=\mathrm{u}^{\mathrm{2}} \:\Rightarrow\:\mathrm{dx}=\mathrm{2udu} \\ $$$$\sigma=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \mathrm{u}^{\mathrm{2}} \mathrm{e}^{−\mathrm{u}^{\mathrm{2}} /\mathrm{4}} \mathrm{du} \\ $$$$\mathrm{e}^{−\mathrm{u}^{\mathrm{2}} /\mathrm{4}} =\mathrm{t}\:\Rightarrow\:−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ue}^{−\mathrm{u}^{\mathrm{2}} /\mathrm{4}} \mathrm{du}=\mathrm{dt} \\ $$$$\sigma=−\mathrm{4}\int_{\mathrm{0}} ^{\infty} \mathrm{u}\centerdot\left(−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ue}^{−\mathrm{u}^{\mathrm{2}} /\mathrm{4}} \right)\mathrm{du} \\ $$$$\:\:\:=−\mathrm{4}\left\{\mathrm{ue}^{−\mathrm{u}^{\mathrm{2}} /\mathrm{4}} −\int\mathrm{e}^{−\mathrm{u}^{\mathrm{2}} /\mathrm{4}} \mathrm{du}\right\}_{\mathrm{0}} ^{\infty} \\ $$$$\:\:\:=\mathrm{4}\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\mathrm{u}^{\mathrm{2}} /\mathrm{4}} \mathrm{du} \\ $$$$\begin{cases}{\mathcal{I}=\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\mathrm{x}^{\mathrm{2}} /\mathrm{4}} \mathrm{dx}}\\{\mathcal{I}=\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\mathrm{y}^{\mathrm{2}} /\mathrm{4}} \mathrm{dy}}\end{cases}\: \\ $$$$\mathcal{I}^{\mathrm{2}} =\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)/\mathrm{4}} \mathrm{dxdy} \\ $$$$\:\:\:\:\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \int_{\mathrm{0}} ^{\infty} \mathrm{re}^{−\mathrm{r}^{\mathrm{2}} /\mathrm{4}} \mathrm{drd}\theta=−\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \int_{\mathrm{0}} ^{\infty} −\frac{\mathrm{1}}{\mathrm{2}}\mathrm{re}^{−\mathrm{r}^{\mathrm{2}} /\mathrm{4}} \mathrm{drd}\theta \\ $$$$\:\:\:\:\:=−\mathrm{2}\left[\frac{\theta}{\mathrm{1}}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left[\mathrm{e}^{−\mathrm{r}^{\mathrm{2}} /\mathrm{4}} \right]_{\mathrm{0}} ^{\infty} =−\left(\frac{\mathrm{2}}{\mathrm{1}}\right)\left(\frac{\pi}{\mathrm{2}}\right)\left(\mathrm{0}−\mathrm{1}\right)=\pi \\ $$$$\mathcal{I}=\sqrt{\pi} \\ $$$$\sigma=\mathrm{4}\mathcal{I}=\mathrm{4}\sqrt{\pi} \\ $$
Answered by john_santu last updated on 24/Dec/20
Answered by Dwaipayan Shikari last updated on 24/Dec/20
∫_0 ^∞ (√x)e^(−(x/4)) dx       (x/4)=u  =8∫_0 ^∞ (√u)e^(−u) du=8Γ((3/2))=4(√π)
$$\int_{\mathrm{0}} ^{\infty} \sqrt{{x}}{e}^{−\frac{{x}}{\mathrm{4}}} {dx}\:\:\:\:\:\:\:\frac{{x}}{\mathrm{4}}={u} \\ $$$$=\mathrm{8}\int_{\mathrm{0}} ^{\infty} \sqrt{{u}}{e}^{−{u}} {du}=\mathrm{8}\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)=\mathrm{4}\sqrt{\pi} \\ $$
Answered by mathmax by abdo last updated on 24/Dec/20
σ=∫_0 ^∞  (√x)e^(−(x/4))  dx  we do the changement (√x)=t ⇒  σ=∫_0 ^∞ t e^(−(t^2 /4)) (2t)dt =2 ∫_0 ^∞  t^2  e^(−(t^2 /4))  dt =_((t/2)=z)   2∫_0 ^∞   4z^(2 )  e^(−z^2 )  2dz  =16 ∫_0 ^∞  z^2  e^(−z^2 ) dz  =_(z^2 =u)   16 ∫_0 ^∞   u e^(−u)  (du/( (√u))) =8 ∫_0 ^∞   u^(1/2)  e^(−u)  du  =8∫_0 ^∞  u^((3/2)−1)  e^(−u) du  =8 ×Γ((3/2)) =8Γ((1/2)+1)  =4Γ((1/2))=4(√π)
$$\sigma=\int_{\mathrm{0}} ^{\infty} \:\sqrt{\mathrm{x}}\mathrm{e}^{−\frac{\mathrm{x}}{\mathrm{4}}} \:\mathrm{dx}\:\:\mathrm{we}\:\mathrm{do}\:\mathrm{the}\:\mathrm{changement}\:\sqrt{\mathrm{x}}=\mathrm{t}\:\Rightarrow \\ $$$$\sigma=\int_{\mathrm{0}} ^{\infty} \mathrm{t}\:\mathrm{e}^{−\frac{\mathrm{t}^{\mathrm{2}} }{\mathrm{4}}} \left(\mathrm{2t}\right)\mathrm{dt}\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{t}^{\mathrm{2}} \:\mathrm{e}^{−\frac{\mathrm{t}^{\mathrm{2}} }{\mathrm{4}}} \:\mathrm{dt}\:=_{\frac{\mathrm{t}}{\mathrm{2}}=\mathrm{z}} \:\:\mathrm{2}\int_{\mathrm{0}} ^{\infty} \:\:\mathrm{4z}^{\mathrm{2}\:} \:\mathrm{e}^{−\mathrm{z}^{\mathrm{2}} } \:\mathrm{2dz} \\ $$$$=\mathrm{16}\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{z}^{\mathrm{2}} \:\mathrm{e}^{−\mathrm{z}^{\mathrm{2}} } \mathrm{dz}\:\:=_{\mathrm{z}^{\mathrm{2}} =\mathrm{u}} \:\:\mathrm{16}\:\int_{\mathrm{0}} ^{\infty} \:\:\mathrm{u}\:\mathrm{e}^{−\mathrm{u}} \:\frac{\mathrm{du}}{\:\sqrt{\mathrm{u}}}\:=\mathrm{8}\:\int_{\mathrm{0}} ^{\infty} \:\:\mathrm{u}^{\frac{\mathrm{1}}{\mathrm{2}}} \:\mathrm{e}^{−\mathrm{u}} \:\mathrm{du} \\ $$$$=\mathrm{8}\int_{\mathrm{0}} ^{\infty} \:\mathrm{u}^{\frac{\mathrm{3}}{\mathrm{2}}−\mathrm{1}} \:\mathrm{e}^{−\mathrm{u}} \mathrm{du}\:\:=\mathrm{8}\:×\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)\:=\mathrm{8}\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{1}\right) \\ $$$$=\mathrm{4}\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\mathrm{4}\sqrt{\pi} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *