Question Number 126788 by john_santu last updated on 24/Dec/20
$$\:\sigma\:=\:\underset{\mathrm{0}} {\overset{\:\:\:\:\:\infty} {\int}}\sqrt{{x}}\:{e}^{−{x}/\mathrm{4}} \:{dx}\:=\:?\: \\ $$
Answered by Ar Brandon last updated on 24/Dec/20
$$\mathrm{x}=\mathrm{u}^{\mathrm{2}} \:\Rightarrow\:\mathrm{dx}=\mathrm{2udu} \\ $$$$\sigma=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \mathrm{u}^{\mathrm{2}} \mathrm{e}^{−\mathrm{u}^{\mathrm{2}} /\mathrm{4}} \mathrm{du} \\ $$$$\mathrm{e}^{−\mathrm{u}^{\mathrm{2}} /\mathrm{4}} =\mathrm{t}\:\Rightarrow\:−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ue}^{−\mathrm{u}^{\mathrm{2}} /\mathrm{4}} \mathrm{du}=\mathrm{dt} \\ $$$$\sigma=−\mathrm{4}\int_{\mathrm{0}} ^{\infty} \mathrm{u}\centerdot\left(−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ue}^{−\mathrm{u}^{\mathrm{2}} /\mathrm{4}} \right)\mathrm{du} \\ $$$$\:\:\:=−\mathrm{4}\left\{\mathrm{ue}^{−\mathrm{u}^{\mathrm{2}} /\mathrm{4}} −\int\mathrm{e}^{−\mathrm{u}^{\mathrm{2}} /\mathrm{4}} \mathrm{du}\right\}_{\mathrm{0}} ^{\infty} \\ $$$$\:\:\:=\mathrm{4}\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\mathrm{u}^{\mathrm{2}} /\mathrm{4}} \mathrm{du} \\ $$$$\begin{cases}{\mathcal{I}=\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\mathrm{x}^{\mathrm{2}} /\mathrm{4}} \mathrm{dx}}\\{\mathcal{I}=\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\mathrm{y}^{\mathrm{2}} /\mathrm{4}} \mathrm{dy}}\end{cases}\: \\ $$$$\mathcal{I}^{\mathrm{2}} =\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)/\mathrm{4}} \mathrm{dxdy} \\ $$$$\:\:\:\:\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \int_{\mathrm{0}} ^{\infty} \mathrm{re}^{−\mathrm{r}^{\mathrm{2}} /\mathrm{4}} \mathrm{drd}\theta=−\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \int_{\mathrm{0}} ^{\infty} −\frac{\mathrm{1}}{\mathrm{2}}\mathrm{re}^{−\mathrm{r}^{\mathrm{2}} /\mathrm{4}} \mathrm{drd}\theta \\ $$$$\:\:\:\:\:=−\mathrm{2}\left[\frac{\theta}{\mathrm{1}}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left[\mathrm{e}^{−\mathrm{r}^{\mathrm{2}} /\mathrm{4}} \right]_{\mathrm{0}} ^{\infty} =−\left(\frac{\mathrm{2}}{\mathrm{1}}\right)\left(\frac{\pi}{\mathrm{2}}\right)\left(\mathrm{0}−\mathrm{1}\right)=\pi \\ $$$$\mathcal{I}=\sqrt{\pi} \\ $$$$\sigma=\mathrm{4}\mathcal{I}=\mathrm{4}\sqrt{\pi} \\ $$
Answered by john_santu last updated on 24/Dec/20
Answered by Dwaipayan Shikari last updated on 24/Dec/20
$$\int_{\mathrm{0}} ^{\infty} \sqrt{{x}}{e}^{−\frac{{x}}{\mathrm{4}}} {dx}\:\:\:\:\:\:\:\frac{{x}}{\mathrm{4}}={u} \\ $$$$=\mathrm{8}\int_{\mathrm{0}} ^{\infty} \sqrt{{u}}{e}^{−{u}} {du}=\mathrm{8}\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)=\mathrm{4}\sqrt{\pi} \\ $$
Answered by mathmax by abdo last updated on 24/Dec/20
$$\sigma=\int_{\mathrm{0}} ^{\infty} \:\sqrt{\mathrm{x}}\mathrm{e}^{−\frac{\mathrm{x}}{\mathrm{4}}} \:\mathrm{dx}\:\:\mathrm{we}\:\mathrm{do}\:\mathrm{the}\:\mathrm{changement}\:\sqrt{\mathrm{x}}=\mathrm{t}\:\Rightarrow \\ $$$$\sigma=\int_{\mathrm{0}} ^{\infty} \mathrm{t}\:\mathrm{e}^{−\frac{\mathrm{t}^{\mathrm{2}} }{\mathrm{4}}} \left(\mathrm{2t}\right)\mathrm{dt}\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{t}^{\mathrm{2}} \:\mathrm{e}^{−\frac{\mathrm{t}^{\mathrm{2}} }{\mathrm{4}}} \:\mathrm{dt}\:=_{\frac{\mathrm{t}}{\mathrm{2}}=\mathrm{z}} \:\:\mathrm{2}\int_{\mathrm{0}} ^{\infty} \:\:\mathrm{4z}^{\mathrm{2}\:} \:\mathrm{e}^{−\mathrm{z}^{\mathrm{2}} } \:\mathrm{2dz} \\ $$$$=\mathrm{16}\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{z}^{\mathrm{2}} \:\mathrm{e}^{−\mathrm{z}^{\mathrm{2}} } \mathrm{dz}\:\:=_{\mathrm{z}^{\mathrm{2}} =\mathrm{u}} \:\:\mathrm{16}\:\int_{\mathrm{0}} ^{\infty} \:\:\mathrm{u}\:\mathrm{e}^{−\mathrm{u}} \:\frac{\mathrm{du}}{\:\sqrt{\mathrm{u}}}\:=\mathrm{8}\:\int_{\mathrm{0}} ^{\infty} \:\:\mathrm{u}^{\frac{\mathrm{1}}{\mathrm{2}}} \:\mathrm{e}^{−\mathrm{u}} \:\mathrm{du} \\ $$$$=\mathrm{8}\int_{\mathrm{0}} ^{\infty} \:\mathrm{u}^{\frac{\mathrm{3}}{\mathrm{2}}−\mathrm{1}} \:\mathrm{e}^{−\mathrm{u}} \mathrm{du}\:\:=\mathrm{8}\:×\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)\:=\mathrm{8}\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{1}\right) \\ $$$$=\mathrm{4}\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\mathrm{4}\sqrt{\pi} \\ $$$$ \\ $$