Menu Close

0-x-m-e-ix-n-dx-




Question Number 148816 by ArielVyny last updated on 31/Jul/21
∫_0 ^∞ x^m e^(ix^n ) dx=??
$$\int_{\mathrm{0}} ^{\infty} {x}^{{m}} {e}^{{ix}^{{n}} } {dx}=?? \\ $$
Answered by mathmax by abdo last updated on 01/Aug/21
A_m =∫_0 ^∞  x^m   e^(ix^n ) dx  changement ix^n  =−z give −x^n  =−iz ⇒  x^n  =iz ⇒x=i^(1/n)  z^(1/n)  ⇒A_m =∫_0 ^∞   i^(m/n)  z^(m/n)  e^(−z) (1/n)i^(1/n)  z^((1/n)−1)  dz  =i^((m+1)/n)  ∫_0 ^∞   z^(((m+1)/n)−1)  e^(−z)  dz   but Γ(x)=∫_0 ^∞  t^(x−1)  e^(−t)  dt  (x>0) ⇒  A_m =(e^((iπ)/2) )^((m+1)/n) Γ(((m+1)/n)) =e^((iπ(m+1))/(2n))  ×Γ(((m+1)/n))
$$\mathrm{A}_{\mathrm{m}} =\int_{\mathrm{0}} ^{\infty} \:\mathrm{x}^{\mathrm{m}} \:\:\mathrm{e}^{\mathrm{ix}^{\mathrm{n}} } \mathrm{dx}\:\:\mathrm{changement}\:\mathrm{ix}^{\mathrm{n}} \:=−\mathrm{z}\:\mathrm{give}\:−\mathrm{x}^{\mathrm{n}} \:=−\mathrm{iz}\:\Rightarrow \\ $$$$\mathrm{x}^{\mathrm{n}} \:=\mathrm{iz}\:\Rightarrow\mathrm{x}=\mathrm{i}^{\frac{\mathrm{1}}{\mathrm{n}}} \:\mathrm{z}^{\frac{\mathrm{1}}{\mathrm{n}}} \:\Rightarrow\mathrm{A}_{\mathrm{m}} =\int_{\mathrm{0}} ^{\infty} \:\:\mathrm{i}^{\frac{\mathrm{m}}{\mathrm{n}}} \:\mathrm{z}^{\frac{\mathrm{m}}{\mathrm{n}}} \:\mathrm{e}^{−\mathrm{z}} \frac{\mathrm{1}}{\mathrm{n}}\mathrm{i}^{\frac{\mathrm{1}}{\mathrm{n}}} \:\mathrm{z}^{\frac{\mathrm{1}}{\mathrm{n}}−\mathrm{1}} \:\mathrm{dz} \\ $$$$=\mathrm{i}^{\frac{\mathrm{m}+\mathrm{1}}{\mathrm{n}}} \:\int_{\mathrm{0}} ^{\infty} \:\:\mathrm{z}^{\frac{\mathrm{m}+\mathrm{1}}{\mathrm{n}}−\mathrm{1}} \:\mathrm{e}^{−\mathrm{z}} \:\mathrm{dz}\:\:\:\mathrm{but}\:\Gamma\left(\mathrm{x}\right)=\int_{\mathrm{0}} ^{\infty} \:\mathrm{t}^{\mathrm{x}−\mathrm{1}} \:\mathrm{e}^{−\mathrm{t}} \:\mathrm{dt}\:\:\left(\mathrm{x}>\mathrm{0}\right)\:\Rightarrow \\ $$$$\mathrm{A}_{\mathrm{m}} =\left(\mathrm{e}^{\frac{\mathrm{i}\pi}{\mathrm{2}}} \right)^{\frac{\mathrm{m}+\mathrm{1}}{\mathrm{n}}} \Gamma\left(\frac{\mathrm{m}+\mathrm{1}}{\mathrm{n}}\right)\:=\mathrm{e}^{\frac{\mathrm{i}\pi\left(\mathrm{m}+\mathrm{1}\right)}{\mathrm{2n}}} \:×\Gamma\left(\frac{\mathrm{m}+\mathrm{1}}{\mathrm{n}}\right) \\ $$
Commented by ArielVyny last updated on 01/Aug/21
nice sir but you have forgot (1/n) if you look  second line then the answer is  ∫_0 ^∞ x^m e^(ix^n ) dx=(1/n)Γ(((m+1)/n))e^((iπ(m+1))/(2n))
$${nice}\:{sir}\:{but}\:{you}\:{have}\:{forgot}\:\frac{\mathrm{1}}{{n}}\:{if}\:{you}\:{look} \\ $$$${second}\:{line}\:{then}\:{the}\:{answer}\:{is} \\ $$$$\int_{\mathrm{0}} ^{\infty} {x}^{{m}} {e}^{{ix}^{{n}} } {dx}=\frac{\mathrm{1}}{{n}}\Gamma\left(\frac{{m}+\mathrm{1}}{{n}}\right){e}^{\frac{{i}\pi\left({m}+\mathrm{1}\right)}{\mathrm{2}{n}}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *