Menu Close

0-x-n-1-x-6-dx-




Question Number 130594 by Lordose last updated on 27/Jan/21
∫_0 ^( ∞) (x^n /(1+x^6 ))dx
0xn1+x6dx
Answered by mindispower last updated on 27/Jan/21
  existe if n∈]−1,5[=∫_0 ^∞ (t^((n−5)/6) /(6(1+t)))dt=(1/6)∫_0 ^∞ (t^(((n+1)/6)−1) /((1+t)^(((n+1)/6)+((−n+5)/6) )  ))  =(1/6)β(((n+1)/6),((5−n)/6))=(1/6).(π/(sin((((n+1)π)/6))))
existeifn]1,5[=0tn566(1+t)dt=160tn+161(1+t)n+16+n+56=16β(n+16,5n6)=16.πsin((n+1)π6)
Commented by Lordose last updated on 27/Jan/21
Gratitude
Gratitude
Answered by mathmax by abdo last updated on 27/Jan/21
A_n =∫_0 ^∞  (x^n /(1+x^6 ))dx we do the cha7gement  x^6  =t ⇒  A_n =∫_0 ^∞   (((t^(1/6) )^n )/(1+t)).(1/6)t^((1/6)−1)  dt =(1/6)∫_0 ^∞  (t^((n/6)+(1/6)−1) /(1+t))dt  =(1/6)∫_0 ^∞  (t^(((n+1)/6)−1) /(1+t))dt =(1/6)×(π/(sin((((n+1)π)/6))))  here i have used ∫_0 ^∞  (t^(a−1) /(1+t))dt =(π/(sin(πa)))  convergence of A_n    at +∞   (x^n /(x^6 +1))∼(1/x^(6−n) ) and ∫_1 ^∞  (dx/x^(6−n) )cv ⇔6−n>1  5−n>1 ⇒n<5 ⇒n≤4
An=0xn1+x6dxwedothecha7gementx6=tAn=0(t16)n1+t.16t161dt=160tn6+1611+tdt=160tn+1611+tdt=16×πsin((n+1)π6)hereihaveused0ta11+tdt=πsin(πa)convergenceofAnat+xnx6+11x6nand1dxx6ncv6n>15n>1n<5n4

Leave a Reply

Your email address will not be published. Required fields are marked *