Menu Close

0-x-n-e-ix-z-dx-z-C-




Question Number 144926 by ArielVyny last updated on 30/Jun/21
∫_0 ^∞ x^n (e^(ix) )^z dx=???   (z∈C)
0xn(eix)zdx=???(zC)
Answered by mathmax by abdo last updated on 30/Jun/21
Ψ=∫_0 ^∞  x^n (e^(ix) )^z  dx  let z=a+ib ⇒  Ψ=∫_0 ^∞  x^n (e^(ix(a+ib)) )dx =∫_0 ^∞ x^n  e^(iax−bx)  dx  =∫_0 ^∞  x^n  e^(−(b−ia)x)  dx =_((b−ia)x=t)   ∫_0 ^∞  (t^n /((b−ia)^n )) e^(−t)  (dt/(b−ia))  =(1/((b−ia)^(n+1) ))∫_0 ^∞  t^n  e^(−t)  dt =((Γ(n+1))/((b−ia)^(n+1) ))  we have −iz=−ia+b ⇒Ψ=((Γ(n+1))/((−iz)^(n+1) ))=((Γ(n+1))/(e^(−i(((n+1)π)/2))  z^(n+1) ))  =e^((i(n+1)π)/2)  ×((Γ(n+1))/z^(n+1) )
Ψ=0xn(eix)zdxletz=a+ibΨ=0xn(eix(a+ib))dx=0xneiaxbxdx=0xne(bia)xdx=(bia)x=t0tn(bia)netdtbia=1(bia)n+10tnetdt=Γ(n+1)(bia)n+1wehaveiz=ia+bΨ=Γ(n+1)(iz)n+1=Γ(n+1)ei(n+1)π2zn+1=ei(n+1)π2×Γ(n+1)zn+1

Leave a Reply

Your email address will not be published. Required fields are marked *