Menu Close

0-x-t-2-a-2t-2-dt-




Question Number 166141 by Lambert last updated on 13/Feb/22
∫_0 ^x (t^2 /( (√(a+2t^2 ))))dt
0xt2a+2t2dt
Answered by MJS_new last updated on 14/Feb/22
∫(t^2 /( (√(a+2t^2 ))))dt=       [u=((√2)/( (√a)))(t+(√(a+2t^2 ))) → dt=((√(a+2t^2 ))/( (√2)u))du]  =((a(√2))/(16))∫(((u^2 −1)^2 )/u^3 )du=((a(√2))/(16))∫(u−(2/u)+(1/u^3 ))du=  =((a(√2))/(16))((u^2 /2)−2ln u −(1/(2u^2 )))=...  =((t(√(a+2t^2 )))/4)−((a(√2))/8)ln ((√2)t+(√(a+2t^2 ))) +C  the rest is easy
t2a+2t2dt=[u=2a(t+a+2t2)dt=a+2t22udu]=a216(u21)2u3du=a216(u2u+1u3)du==a216(u222lnu12u2)==ta+2t24a28ln(2t+a+2t2)+Ctherestiseasy
Commented by cortano1 last updated on 14/Feb/22
 u=((√2)/( (√a))) t? sir
u=2at?sir
Commented by MJS_new last updated on 14/Feb/22
typo = instead of +; it′s now corrected
typo=insteadof+;itsnowcorrected
Answered by Mathspace last updated on 14/Feb/22
f(a)=(1/( (√a)))∫_0 ^x  (t^2 /( (√(1+((2t^2 )/a)))))dt  =(a/2)×(1/( (√a)))∫_0 ^x  (((2/a)t^2 )/( (√(1+((2t^2 )/a)))))dt  =((√a)/2)∫_0 ^x (√(1+((2t^2 )/a)))dt−((√a)/2)∫_0 ^x (dt/( (√(1+((2t^2 )/a)))))  (((√2)t)/( (√a)))=shu ⇒u=argsh((((√2)t)/( (√a))))  ∫_0 ^x (√(1+((2t^2 )/a)))dt=∫_0 ^(argsh((((√2)x)/( (√a))))) chu.((√a)/( (√2)))chudu  =((√a)/( (√2)))∫_0 ^(ln((((√2)x)/( (√a)))+(√(1+((2x^2 )/a)))))   ((1+ch(2u))/2)du  =((√a)/2)ln(....)+((√a)/(4(√2)))[sh(2u)]_0 ^(ln(...))   =((√a)/2)ln(...)+((√a)/(4(√2)))[((e^(2u) −e^(−2u) )/2)]_0 ^(ln(...))   =((√a)/2)ln((((√2)x)/( (√a)))+(√(1+((2x^2 )/a))))  ((√a)/(8(√2))){ ((((√2)x)/( (√a)))+(√(1+((2x^2 )/a))))^2 −((((√2)x)/( (√a)))+(√(1+((2x^2 )/a))))^(−2) }  same way for other integral...
f(a)=1a0xt21+2t2adt=a2×1a0x2at21+2t2adt=a20x1+2t2adta20xdt1+2t2a2ta=shuu=argsh(2ta)0x1+2t2adt=0argsh(2xa)chu.a2chudu=a20ln(2xa+1+2x2a)1+ch(2u)2du=a2ln(.)+a42[sh(2u)]0ln()=a2ln()+a42[e2ue2u2]0ln()=a2ln(2xa+1+2x2a)a82{(2xa+1+2x2a)2(2xa+1+2x2a)2}samewayforotherintegral

Leave a Reply

Your email address will not be published. Required fields are marked *