Question Number 166141 by Lambert last updated on 13/Feb/22

Answered by MJS_new last updated on 14/Feb/22
![∫(t^2 /( (√(a+2t^2 ))))dt= [u=((√2)/( (√a)))(t+(√(a+2t^2 ))) → dt=((√(a+2t^2 ))/( (√2)u))du] =((a(√2))/(16))∫(((u^2 −1)^2 )/u^3 )du=((a(√2))/(16))∫(u−(2/u)+(1/u^3 ))du= =((a(√2))/(16))((u^2 /2)−2ln u −(1/(2u^2 )))=... =((t(√(a+2t^2 )))/4)−((a(√2))/8)ln ((√2)t+(√(a+2t^2 ))) +C the rest is easy](https://www.tinkutara.com/question/Q166148.png)
Commented by cortano1 last updated on 14/Feb/22

Commented by MJS_new last updated on 14/Feb/22

Answered by Mathspace last updated on 14/Feb/22
![f(a)=(1/( (√a)))∫_0 ^x (t^2 /( (√(1+((2t^2 )/a)))))dt =(a/2)×(1/( (√a)))∫_0 ^x (((2/a)t^2 )/( (√(1+((2t^2 )/a)))))dt =((√a)/2)∫_0 ^x (√(1+((2t^2 )/a)))dt−((√a)/2)∫_0 ^x (dt/( (√(1+((2t^2 )/a))))) (((√2)t)/( (√a)))=shu ⇒u=argsh((((√2)t)/( (√a)))) ∫_0 ^x (√(1+((2t^2 )/a)))dt=∫_0 ^(argsh((((√2)x)/( (√a))))) chu.((√a)/( (√2)))chudu =((√a)/( (√2)))∫_0 ^(ln((((√2)x)/( (√a)))+(√(1+((2x^2 )/a))))) ((1+ch(2u))/2)du =((√a)/2)ln(....)+((√a)/(4(√2)))[sh(2u)]_0 ^(ln(...)) =((√a)/2)ln(...)+((√a)/(4(√2)))[((e^(2u) −e^(−2u) )/2)]_0 ^(ln(...)) =((√a)/2)ln((((√2)x)/( (√a)))+(√(1+((2x^2 )/a)))) ((√a)/(8(√2))){ ((((√2)x)/( (√a)))+(√(1+((2x^2 )/a))))^2 −((((√2)x)/( (√a)))+(√(1+((2x^2 )/a))))^(−2) } same way for other integral...](https://www.tinkutara.com/question/Q166155.png)