Menu Close

0-x-x-2-4x-4-




Question Number 162525 by mathlove last updated on 30/Dec/21
∫_0 ^∞ ((√x)/((x^2 +4x+4)))=?
0x(x2+4x+4)=?
Answered by Ar Brandon last updated on 24/Mar/22
I=∫_0 ^∞ ((√x)/(x^2 +4x+4))dx, x=t^2 ⇒dx=2tdt     =2∫_0 ^∞ (t^2 /(t^4 +4t^2 +4))dt=2∫_0 ^∞ (t^2 /((t^2 +2)^2 ))dt=∫_(−∞) ^(+∞) (t^2 /((t^2 +2)^2 ))dt  ϕ(z)=(z^2 /((z^2 +2)^2 )), poles: z_1 =−i(√2) , z_2 =i(√2)  I=2iπRes(ϕ, z_2 )  Res (ϕ, z_2 )=lim_(z→z_2 ) (d/dz){(z^2 /((z−z_1 )^2 ))}=lim_(z→z_2 ) {((2z(z−z_1 )^2 −2z^2 (z−z_1 ))/((z−z_1 )^4 ))}  =((2z_2 (z_2 −z_1 )^2 −2z_2 ^2 (z_2 −z_1 ))/((z_2 −z_1 )^4 ))=((2(√2)i(2(√2)i)^2 −2(i(√2))^2 (2(√2)i))/(64))  =((−16(√2)i+8(√2)i)/(64))=−((√2)/8)i⇒I=2iπ(−((√2)/8)i)=(π/( 2(√2)))
I=0xx2+4x+4dx,x=t2dx=2tdt=20t2t4+4t2+4dt=20t2(t2+2)2dt=+t2(t2+2)2dtφ(z)=z2(z2+2)2,poles:z1=i2,z2=i2I=2iπRes(φ,z2)Res(φ,z2)=limzz2ddz{z2(zz1)2}=limzz2{2z(zz1)22z2(zz1)(zz1)4}=2z2(z2z1)22z22(z2z1)(z2z1)4=22i(22i)22(i2)2(22i)64=162i+82i64=28iI=2iπ(28i)=π22
Answered by cortano last updated on 30/Dec/21
 ∫_0 ^( ∞)  ((√x)/(x^2 +4x+4)) dx= ∫_0 ^( ∞)  ((2u^2 )/(u^4 +4u^2 +4)) du    [ u=(√x) ]    = ∫_0 ^( ∞)  ((2u^2 )/((u^2 +2)^2 )) du = −(u/(u^2 +2 )) ∣_0 ^∞  +∫ (du/(u^2 +2))   = 0 + (1/( (√2)))[ tan^(−1) ((u/( (√2))))]_0 ^∞ = (π/(2(√2))) = ((π(√2))/4)
0xx2+4x+4dx=02u2u4+4u2+4du[u=x]=02u2(u2+2)2du=uu2+20+duu2+2=0+12[tan1(u2)]0=π22=π24

Leave a Reply

Your email address will not be published. Required fields are marked *