0-x-x-2-4x-4- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 162525 by mathlove last updated on 30/Dec/21 ∫∞0x(x2+4x+4)=? Answered by Ar Brandon last updated on 24/Mar/22 I=∫0∞xx2+4x+4dx,x=t2⇒dx=2tdt=2∫0∞t2t4+4t2+4dt=2∫0∞t2(t2+2)2dt=∫−∞+∞t2(t2+2)2dtφ(z)=z2(z2+2)2,poles:z1=−i2,z2=i2I=2iπRes(φ,z2)Res(φ,z2)=limz→z2ddz{z2(z−z1)2}=limz→z2{2z(z−z1)2−2z2(z−z1)(z−z1)4}=2z2(z2−z1)2−2z22(z2−z1)(z2−z1)4=22i(22i)2−2(i2)2(22i)64=−162i+82i64=−28i⇒I=2iπ(−28i)=π22 Answered by cortano last updated on 30/Dec/21 ∫0∞xx2+4x+4dx=∫0∞2u2u4+4u2+4du[u=x]=∫0∞2u2(u2+2)2du=−uu2+2∣0∞+∫duu2+2=0+12[tan−1(u2)]0∞=π22=π24 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 0-1-x-x-dx-Next Next post: calculate-0-3-arcsin-2t-1-t-2-dt- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.