Question Number 54826 by rahul 19 last updated on 13/Feb/19

Commented by maxmathsup by imad last updated on 12/Feb/19
![2) we have ∫_(−1) ^1 f(x)dx =∫_(−1) ^1 (x^3 +3x+4)dx =[(x^4 /4) +(3/2)x^2 +4x]_(−1) ^1 =(1/4) +(3/2) +4 −(1/4) −(3/2) +4 =8 let find f^(−1) (x) f(x)=y ⇔x^3 +3x +4 =y ⇔x^3 +3x+4−y =0 changement x =u+v give u^3 +3uv(u+v) +v^3 +3(u+v) +4−y =0 ⇒ u^3 +v^3 +4−y + (u+v)(3uv+3) =0 ⇒u^3 +v^3 =y−4 and uv =−1 ⇒ so u^3 and v^3 are solution of the equation X^2 −(y−4)X −1 =0 ⇒ Δ =(y−4)^2 +4>0 ⇒X_1 =((y−4 +(√((y−4)^2 +4)))/2) and X_2 =((y−4 −(√((y−4)^2 )4)))/2) ⇒x =^3 (√X_1 ) +(√X_2 ) ⇒f^(−1) (x)=(((x−4+(√((x−4)^2 +4)))/2))^(1/3) +(((x−4 −(√((x−4)^2 +4)))/2))^(1/3) ⇒ ∫_0 ^4 f^(−1) (x)dx =(1/((^3 (√2))))∫_0 ^4 (x−4+(√((x−4)^2 +4)))^(1/3) dx +(1/((^3 (√2))))∫_0 ^4 (x−4−(√((x−4)^2 +4)))^(1/3) dx let I =∫_0 ^4 (x−4 +(√((x−4)^2 +4)))^(1/3) dx chang .x−4 =2sh(t) give I = ∫_(−argsh(2)) ^0 (2sh(t) +2 ch(t))^(1/3) 2ch(t)dt =2(^3 (√2)) ∫_(−ln(2+(√5))) ^0 (sh(t)+ch(t)^(1/3) ch(t)dt ....be continued... let A =∫_0 ^4 f^(−1) (x)dx changement f^(−1) (x)= t give x=f(t) ⇒ A =∫_(f^(−1) (0)) ^(f^(−1) (4)) t f^′ (t)dt = [t f(t)]_(f^(−1) (0)) ^(f^(−1) (4)) −∫_(f^(−1) (0)) ^(f^(−1) (4)) f(t)dt but f^(−1) (4) =1 −1 =0 and f^(−1) (0) =(((−4 +(√(20)))/2))^(1/3) +(((−4−(√(20)))/2))^(1/3) =(−2+(√5))^(1/3) −(2+(√5))^(1/(3 )) =α_0 ⇒ A =[tf(t)]_α_0 ^0 −∫_α_0 ^0 f(t)dt =−α_0 f(α_0 ) +∫_0 ^α_0 ( t^3 +3t+4)dt =−α_0 f(α_0 ) +(α_0 ^3 /3) +(3/2) α_0 ^2 +4α_0 so the value of ∫_0 ^4 f^(−1) (x) dx is known .](https://www.tinkutara.com/question/Q54833.png)
Commented by maxmathsup by imad last updated on 12/Feb/19
![in general let find ∫_a ^b f^(−1) (x)dx chang.f^(−1) (x) =t give x =f(t) ⇒ ∫_a ^b f^(−1) (x)dx =∫_(f^(−1) (a)) ^(f^(−1) (b)) t f^′ (t)dt =[t f(t)]_(f^(−1) (a)) ^(f^(−1) (b)) −∫_(f^(−1) (a)) ^(f^(−1) (b)) f(t)dt =bf^(−1) (b)−af^(−1) (a) −∫_(f^(−1) (a)) ^(f^(−1) (b)) f(t)dt .](https://www.tinkutara.com/question/Q54844.png)
Commented by kaivan.ahmadi last updated on 12/Feb/19
![y=f^(−1) (x)⇒f(y)=x⇒y^3 +3y+4=x,dx=(3y^2 +3)dy if x=0⇒y=−1 if x=4⇒y=0 or −3 ∫_0 ^4 f^(−1) (x)dx=∫_(−1) ^0 y(3y^2 +3)dy=[((3y^4 )/4)+((3y^2 )/2)]_(−1) ^0 =−((3/4)+(3/2))=−(9/4) is it true?](https://www.tinkutara.com/question/Q54845.png)
Commented by maxmathsup by imad last updated on 12/Feb/19

Commented by Meritguide1234 last updated on 13/Feb/19

Answered by tanmay.chaudhury50@gmail.com last updated on 12/Feb/19
![1)∫_0 ^1 (1−x^7 )^(1/4) dx−∫_0 ^1 (1−x^4 )^(1/7) dx I_1 −I_2 ∫_0 ^1 (1−x^a )^(1/b) dx x^a =sin^2 α x=(sinα)^(2/a) dx=(2/a)×(sinα)^((2/a)−1) (cosα)dα ∫_0 ^(π/2) (1−sin^2 α)^(1/b) ×(2/a)×(sinα)^((2/a)−1) (cosα)dα ∫_0 ^(π/2) (cosα)^(2/b) ×(2/a)×(sinα)^((2/a)−1) (cosα)dα (2/a)∫_0 ^(π/2) (sinα)^((2/a)−1) ×(cosα)^((2/b)+1) dα (1/a)×2∫_0 ^(π/2) (sinα)^(2×(1/a)−1) (cosα)^(2((1/b)+1)−1) dα formula 2∫_0 ^(π/2) (sinα)^(2p−1) (cosα)^(2q−1) dα ((⌈(p)⌈q))/(⌈(p+q))) so (1/a)×2∫_0 ^(π/2) (sinα)^(2×(1/a)−1) (cosα)^(2((1/b)+1)−1) dα =(1/a)×((⌈((1/a))⌈((1/b)+1))/(⌈((1/a)+(1/b)+1))) so I_1 =(1/7)×((⌈((1/7))⌈((1/4)+1))/(⌈((1/4)+(1/7)+1))) [a=7 b=4] I_2 =(1/4)×((⌈((1/4))⌈((1/7)+1))/(⌈((1/4)+(1/7)+1))) [a=4 b=7] required ans=I_1 −I_2 formula ⌈(n+1)=n! pls check upto this step... I_1 −I_2 =(1/(⌈(((11)/(28))+1)))[(1/7)×⌈((1/7))×⌈((1/4)+1)−(1/4)×⌈((1/4))×⌈((1/7)+1)] let a=(1/7) b=(1/4) ans=(1/(⌈(a+b+1)))×[a×⌈a)⌈(b+1)−b⌈(b)⌈(a+1)] =(1/((a+b)!))×[a(a−1)!b!−b(b−1)!a!] =(1/((a+b)!))[a!b!−b!a!]=0](https://www.tinkutara.com/question/Q54834.png)
Commented by mr W last updated on 12/Feb/19
![f(x)=(1−x^7 )^(1/4) =y ⇒x=(1−y^4 )^(1/7) ⇒f^(−1) (x)=(1−x^4 )^(1/7) =g(x) ⇒g(x) is inverse function of f(x), i.e. g(f(x))=x I_2 =∫_0 ^1 g(y)dy let y=f(x) ⇒g(y)=g(f(x))=x dy=f′(x)dx ⇒I_2 =∫_0 ^1 g(y)dy=∫_(g(0)) ^(g(1)) xf′(x)dx=∫_1 ^0 xf′(x)dx=−∫_0 ^1 xf′(x)dx I_1 =∫_0 ^1 f(x)dx I=I_1 −I_2 =∫_0 ^1 f(x)dx+∫_0 ^1 xf′(x)dx =∫_0 ^1 [f(x)+xf′(x)]dx =[xf(x)]_0 ^1 =0](https://www.tinkutara.com/question/Q54839.png)
Commented by rahul 19 last updated on 12/Feb/19

Commented by rahul 19 last updated on 12/Feb/19

Commented by rahul 19 last updated on 12/Feb/19

Commented by tanmay.chaudhury50@gmail.com last updated on 12/Feb/19

Commented by rahul 19 last updated on 13/Feb/19

Answered by mr W last updated on 12/Feb/19
![Q(2) f(x)=x^3 +3x+4 I_1 =∫_(−1) ^1 f(x)dx=∫_(−1) ^0 f(x)dx+∫_0 ^1 f(x)dx I_2 =∫_0 ^4 f^(−1) (x)dx let x=f(t)⇒t=f^(−1) (x) dx=f′(t)dt I_2 =∫_(f^(−1) (0)) ^(f^(−1) (4)) tf′(t)dt=∫_(−1) ^0 tf′(t)dt=∫_(−1) ^0 xf′(x)dx I=I_1 +I_2 =∫_(−1) ^0 f(x)dx+∫_0 ^1 f(x)dx+∫_(−1) ^0 xf′(x)dx =∫_(−1) ^0 [f(x)+xf′(x)]dx+∫_0 ^1 f(x)dx =[xf(x)]_(−1) ^0 +∫_0 ^1 f(x)dx =0+∫_0 ^1 f(x)dx =∫_0 ^1 f(x)dx =∫_0 ^1 (x^3 +3x+4)dx =[(x^4 /4)+((3x^2 )/2)+4x]_0 ^1 =(1/4)+(3/2)+4 =((23)/4) ⇒∫_(−1) ^( 1) f(x)dx + ∫_0 ^( 4) f^( −1) (x)dx =((23)/4)](https://www.tinkutara.com/question/Q54842.png)
Commented by mr W last updated on 12/Feb/19
![certainly one can also do like this: I_1 =∫_(−1) ^1 f(x)dx=∫_(−1) ^1 (x^3 +3x+4)dx =[(x^4 /4)+((3x^2 )/2)+4x]_(−1) ^1 =8 I_2 =∫_(f^(−1) (0)) ^(f^(−1) (4)) tf′(t)dt=∫_(−1) ^0 tf′(t)dt=∫_(−1) ^0 t(3t^2 +3)dt =3∫_(−1) ^0 (t^3 +t)dt =3[(t^4 /4)+(t^2 /2)]_(−1) ^0 =−3((1/4)+(1/2)) =−(9/4) ⇒I=8−(9/4)=((23)/4)](https://www.tinkutara.com/question/Q54843.png)
Commented by rahul 19 last updated on 13/Feb/19

Answered by mr W last updated on 12/Feb/19

Commented by rahul 19 last updated on 13/Feb/19
thank you sir!
Answered by mr W last updated on 13/Feb/19
![Q(4) let I_2 =∫_0 ^2 (x^2 +2x)^(1/3) dx=∫_0 ^2 [(x+1)^2 −1]^(1/3) d(x+1) =∫_1 ^3 (t^2 −1)^(1/3) dt =∫_1 ^3 (x^2 −1)^(1/3) dx=∫_1 ^3 g(x)dx with g(x)=(x^2 −1)^(1/3) let f(x)=(√(x^3 +1))=y x=(y^2 −1)^(1/3) f^(−1) (x)=(x^2 −1)^(1/3) =g(x) let I_1 =∫_0 ^2 (√(x^3 +1))dx=∫_0 ^2 f(x)dx let x=g(t) f(x)=f(g(t))=t dx=g′(t)dt I_1 =∫_0 ^2 f(x)dx=∫_(f(0)) ^(f(2)) tg′(t)dt=∫_1 ^3 tg′(t)dt =∫_1 ^3 xg′(x)dx I=I_1 +I_2 =∫_1 ^3 xg′(x)dx+∫_1 ^3 g(x)dx =∫_1 ^3 [g(x)+xg′(x)]dx =[xg(x)]_1 ^3 =3(3^2 −1)^(1/3) −1(1^2 −1)^(1/3) =3×8^(1/3) =3×2 =6 ⇒ ∫_0 ^( 2) ((√(x^3 +1)) + (x^2 +2x)^(1/3) )dx =6](https://www.tinkutara.com/question/Q54865.png)
Commented by rahul 19 last updated on 14/Feb/19
