Menu Close

1-0-10pi-sec-1-x-cot-1-x-dx-2-area-bounded-by-curve-y-ln-x-and-the-lines-y-0-y-ln-3-and-x-0-is-equal-to-




Question Number 59474 by rahul 19 last updated on 10/May/19
1) ∫_0 ^(10π) ([sec^(−1) x]+[cot^(−1) x] ) dx = ?  2)area bounded by curve y=ln(x) and  the lines y=0,y=ln(3) and x=0 is  equal to ?
1)010π([sec1x]+[cot1x])dx=?2)areaboundedbycurvey=ln(x)andthelinesy=0,y=ln(3)andx=0isequalto?
Commented by tanmay last updated on 10/May/19
1) from graph it cleaer now...  [cot^(−1) x]=0    when x [0,10π]  ∫_0 ^(10π) [sec^(−1) x]dx+∫_0 ^(10π) [cot^(−1) x]dx  ∫_0 ^(sec1) [sec^(−1) x]dx+∫_(sec1) ^(10π) [sec^(−1) x]dx  =∫_0 ^(sec1) 0×dx+∫_(sec1) ^(10π) 1×dx  =0+(10π−sec1)  =10π−sec1
1)fromgraphitcleaernow[cot1x]=0whenx[0,10π]010π[sec1x]dx+010π[cot1x]dx0sec1[sec1x]dx+sec110π[sec1x]dx=0sec10×dx+sec110π1×dx=0+(10πsec1)=10πsec1
Commented by tanmay last updated on 10/May/19
Commented by tanmay last updated on 10/May/19
Answered by tanmay last updated on 10/May/19
2)∫_0 ^(ln3) xdy  y=lnx   x=e^y   ∫_0 ^(ln3) e^y dy→∣e^y ∣_0 ^(ln3)   =e^(ln3) −1  =3−1=2
2)0ln3xdyy=lnxx=ey0ln3eydy→∣ey0ln3=eln31=31=2
Commented by tanmay last updated on 10/May/19
ans of 2 pls check
ansof2plscheck
Commented by rahul 19 last updated on 10/May/19
thanks sir.
thankssir.

Leave a Reply

Your email address will not be published. Required fields are marked *