Menu Close

1-0-a-a-x-a-x-x-dx-a-0-b-a-2-c-a-d-2a-e-5-2-a-2-0-pi-4-1-tan-x-1-tan-x-dx-a-0-b-ln-2-c-ln-2-d-piln-2-e-




Question Number 106570 by bobhans last updated on 06/Aug/20
(1)∫_0 ^a  ((√(a−x))/( (√(a−x))+(√x))) dx =?  (a) 0      (b) (a/2)      (c) a        (d) 2a      (e) (5/2)a  (2) ∫_0 ^(π/4) ((1−tan x)/(1+tan x)) dx =?  (a) 0    (b) ln 2     (c) −ln 2     (d) πln 2   (e)(1/2)ln 2  (3) ((√3)+2)^x  > 7−4(√3) , find the solution set
(1)a0axax+xdx=?(a)0(b)a2(c)a(d)2a(e)52a(2)π/401tanx1+tanxdx=?(a)0(b)ln2(c)ln2(d)πln2(e)12ln2(3)(3+2)x>743,findthesolutionset
Answered by bemath last updated on 06/Aug/20
(2) ((1−tan x)/(1+tan x)) = ((cos x−sin x)/(cos x+sin x))     = ((1−sin 2x)/(cos 2x)) = sec 2x−tan 2x  ∫_0 ^(π/4) (sec 2x−tan 2x)dx =  [(1/2)ln ∣sec 2x−tan 2x∣−(1/2)ln ∣cos 2x∣ ]_( 0) ^(π/4)   = ln 2
(2)1tanx1+tanx=cosxsinxcosx+sinx=1sin2xcos2x=sec2xtan2xπ/40(sec2xtan2x)dx=[12lnsec2xtan2x12lncos2x]0π4=ln2
Answered by john santu last updated on 06/Aug/20
(3) (2+(√3))^x  > 7−2(√(12))          (2+(√3))^x  > (2−(√3))^2           (2+(√3))^x  > ((1/(2+(√3))))^2            (2+(√3))^x  > (2+(√3))^(−2)             x > −2
(3)(2+3)x>7212(2+3)x>(23)2(2+3)x>(12+3)2(2+3)x>(2+3)2x>2
Answered by Dwaipayan Shikari last updated on 06/Aug/20
∫_0 ^a ((√(a−x))/( (√(a−x))+(√x)))dx=∫_0 ^a ((√x)/( (√x)+(√(a−x))))dx=I  2I=∫_0 ^a (((√(a−x))+(√x))/( (√x)+(√(a−x))))dx=∫_0 ^a 1dx=a  I=(a/2)
0aaxax+xdx=0axx+axdx=I2I=0aax+xx+axdx=0a1dx=aI=a2

Leave a Reply

Your email address will not be published. Required fields are marked *