Menu Close

1-0-sin-x-x-p-sin-x-dx-p-gt-0-2-pi-xcos-x-x-p-x-q-dx-p-gt-0and-q-gt-0-3-0-sin-x-p-x-q-dx-p-gt-0-q-gt-0-4-2-0-dx-ln-x-p-p-gt-0-5-1-0-cos-1-1-x-




Question Number 190168 by TUN last updated on 29/Mar/23
1)∫^∞ _0 ((sin x)/(x^p +sin x))dx ,p>0  2)∫^∞ _π ((xcos x)/(x^p +x^q ))dx,p>0and q>0  3)∫^∞ _0 ((sin x^p )/( x^q ))dx, p>0,q>0  4)∫^2 _0 (dx/(∣ln x∣^p )) ,p>0  5)∫^1 _0 ((cos(1/(1−x)))/( ((1−x^2 ))^(1/n) ))dx  6)∫^∞ _0 (dx/(x^p ((sin^2 x))^(1/3) ))
$$\left.\mathrm{1}\right)\underset{\mathrm{0}} {\int}^{\infty} \frac{{sin}\:{x}}{{x}^{{p}} +{sin}\:{x}}{dx}\:,{p}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\underset{\pi} {\int}^{\infty} \frac{{xcos}\:{x}}{{x}^{{p}} +{x}^{{q}} }{dx},{p}>\mathrm{0}{and}\:{q}>\mathrm{0} \\ $$$$\left.\mathrm{3}\right)\underset{\mathrm{0}} {\int}^{\infty} \frac{{sin}\:{x}^{{p}} }{\:{x}^{{q}} }{dx},\:{p}>\mathrm{0},{q}>\mathrm{0} \\ $$$$\left.\mathrm{4}\right)\underset{\mathrm{0}} {\int}^{\mathrm{2}} \frac{{dx}}{\mid{ln}\:{x}\mid^{{p}} }\:,{p}>\mathrm{0} \\ $$$$\left.\mathrm{5}\right)\underset{\mathrm{0}} {\int}^{\mathrm{1}} \frac{{cos}\frac{\mathrm{1}}{\mathrm{1}−{x}}}{\:\sqrt[{{n}}]{\mathrm{1}−{x}^{\mathrm{2}} }}{dx} \\ $$$$\left.\mathrm{6}\right)\underset{\mathrm{0}} {\int}^{\infty} \frac{{dx}}{{x}^{{p}} \sqrt[{\mathrm{3}}]{{sin}^{\mathrm{2}} {x}}} \\ $$
Commented by senestro last updated on 30/Mar/23
how can we solve it?
$${how}\:{can}\:{we}\:{solve}\:{it}? \\ $$
Commented by TUN last updated on 01/Apr/23
It′s the improper integral
$${It}'{s}\:{the}\:{improper}\:{integral} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *