1-0-x-1-x-1-lnx-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 179844 by mathlove last updated on 03/Nov/22 ∫01x−1(x+1)lnxdx=? Answered by Peace last updated on 03/Nov/22 ∫01x−xs(x+1)ln(x)=f(s)f(0)=Δ=∫01x−1ln(x)(x+1)f(1)=0f′(s)=∫01xs1+xdx=∫01xs−xs+11−x2dx=∫01ts−12−ts22(1−t)dt=12(Ψ(s2+1)−Ψ(s+12))Ψ(s)=−γ+∫011−xs−11−xdxΨ(s)=Γ′(s)Γ(s)f(s)=ln(Γ(s+22)Γ(s+12))+cf(1)=ln(Γ(32)Γ(1))+c=0⇒c=ln(1Γ(32))=ln(2π)Δ=f(0)=ln(Γ(1)Γ(12))+ln(2π)=ln(1π)+ln(2π)=ln(2π) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-48769Next Next post: Question-114313 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.