Menu Close

1-0-x-1-x-1-lnx-dx-




Question Number 179844 by mathlove last updated on 03/Nov/22
∫^1 _0  ((x−1)/((x+1)lnx))dx=?
01x1(x+1)lnxdx=?
Answered by Peace last updated on 03/Nov/22
∫_0 ^1 ((x−x^s )/((x+1)ln(x)))=f(s)  f(0)=Δ=∫_0 ^1 ((x−1)/(ln(x)(x+1)))  f(1)=0  f′(s)=∫_0 ^1 (x^s /(1+x))dx=∫_0 ^1 ((x^s −x^(s+1) )/(1−x^2 ))dx  =∫_0 ^1 ((t^((s−1)/2) −t^(s/2) )/(2(1−t)))dt=(1/2)(Ψ((s/2)+1)−Ψ(((s+1)/2)))  Ψ(s)=−γ+∫_0 ^1 ((1−x^(s−1) )/(1−x))dx  Ψ(s)=((Γ′(s))/(Γ(s)))  f(s)=ln(((Γ(((s+2)/2)))/(Γ(((s+1)/2)))))+c  f(1)=ln(((Γ((3/2)))/(Γ(1))))+c=0⇒c=ln((1/(Γ((3/2)))))=ln((2/( (√π))))  Δ=f(0)=ln(((Γ(1))/(Γ((1/2)))))+ln((2/( (√π))))=ln((1/( (√π))))+ln((2/( (√π))))=ln((2/π))
01xxs(x+1)ln(x)=f(s)f(0)=Δ=01x1ln(x)(x+1)f(1)=0f(s)=01xs1+xdx=01xsxs+11x2dx=01ts12ts22(1t)dt=12(Ψ(s2+1)Ψ(s+12))Ψ(s)=γ+011xs11xdxΨ(s)=Γ(s)Γ(s)f(s)=ln(Γ(s+22)Γ(s+12))+cf(1)=ln(Γ(32)Γ(1))+c=0c=ln(1Γ(32))=ln(2π)Δ=f(0)=ln(Γ(1)Γ(12))+ln(2π)=ln(1π)+ln(2π)=ln(2π)

Leave a Reply

Your email address will not be published. Required fields are marked *