Question Number 179844 by mathlove last updated on 03/Nov/22
$$\underset{\mathrm{0}} {\int}^{\mathrm{1}} \:\frac{{x}−\mathrm{1}}{\left({x}+\mathrm{1}\right){lnx}}{dx}=? \\ $$
Answered by Peace last updated on 03/Nov/22
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}−{x}^{{s}} }{\left({x}+\mathrm{1}\right){ln}\left({x}\right)}={f}\left({s}\right) \\ $$$${f}\left(\mathrm{0}\right)=\Delta=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}−\mathrm{1}}{{ln}\left({x}\right)\left({x}+\mathrm{1}\right)} \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{0} \\ $$$${f}'\left({s}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{s}} }{\mathrm{1}+{x}}{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{s}} −{x}^{{s}+\mathrm{1}} }{\mathrm{1}−{x}^{\mathrm{2}} }{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{t}^{\frac{{s}−\mathrm{1}}{\mathrm{2}}} −{t}^{\frac{{s}}{\mathrm{2}}} }{\mathrm{2}\left(\mathrm{1}−{t}\right)}{dt}=\frac{\mathrm{1}}{\mathrm{2}}\left(\Psi\left(\frac{{s}}{\mathrm{2}}+\mathrm{1}\right)−\Psi\left(\frac{{s}+\mathrm{1}}{\mathrm{2}}\right)\right) \\ $$$$\Psi\left({s}\right)=−\gamma+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−{x}^{{s}−\mathrm{1}} }{\mathrm{1}−{x}}{dx} \\ $$$$\Psi\left({s}\right)=\frac{\Gamma'\left({s}\right)}{\Gamma\left({s}\right)} \\ $$$${f}\left({s}\right)={ln}\left(\frac{\Gamma\left(\frac{{s}+\mathrm{2}}{\mathrm{2}}\right)}{\Gamma\left(\frac{{s}+\mathrm{1}}{\mathrm{2}}\right)}\right)+{c} \\ $$$${f}\left(\mathrm{1}\right)={ln}\left(\frac{\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)}{\Gamma\left(\mathrm{1}\right)}\right)+{c}=\mathrm{0}\Rightarrow{c}={ln}\left(\frac{\mathrm{1}}{\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)}\right)={ln}\left(\frac{\mathrm{2}}{\:\sqrt{\pi}}\right) \\ $$$$\Delta={f}\left(\mathrm{0}\right)={ln}\left(\frac{\Gamma\left(\mathrm{1}\right)}{\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}\right)+{ln}\left(\frac{\mathrm{2}}{\:\sqrt{\pi}}\right)={ln}\left(\frac{\mathrm{1}}{\:\sqrt{\pi}}\right)+{ln}\left(\frac{\mathrm{2}}{\:\sqrt{\pi}}\right)={ln}\left(\frac{\mathrm{2}}{\pi}\right) \\ $$$$ \\ $$