Menu Close

1-0-x-1-x-2-4x-3-dx-




Question Number 154351 by ZiYangLee last updated on 17/Sep/21
∫_(−1) ^( 0)  ((x−1)/( (√(x^2 −4x+3)) )) dx =?
10x1x24x+3dx=?
Answered by ZiYangLee last updated on 17/Sep/21
∫_(−1) ^( 0)  ((x−1)/( (√(x^2 −4x+3)) )) dx  = ∫_(−1) ^( 0)  (((x−2)+1)/( (√(x^2 −4x+3)) )) dx  = ∫_(−1) ^( 0)  (((1/2)(2x−4)+1)/( (√(x^2 −4x+3)) )) dx  = ∫_(−1) ^( 0)  (((2x−4)+2)/(2(√(x^2 −4x+3)) )) dx  = ∫_(−1) ^( 0)  ((2x−4)/(2(√(x^2 −4x+3)) )) dx +∫_(−1) ^( 0) (1/( (√(x^2 −4x+3)) )) dx               let u=x^2 −4x+3              du=(2x−4) dx  = ∫_8 ^( 3) (1/(2(√u) )) du +∫_(−1) ^( 0) (x^2 −4x+3)^(−(1/2))  dx  = −∫_3 ^( 8)  (1/(2(√u) )) du +[ ((√(x^2 −4x+3))/(2(2x−4))) ]_(−1) ^0   = −(1/2)[ 2(√u) ]_3 ^8  + (1/4)[ ((√(x^2 −4x+3))/(x−2)) ]_(−1) ^0   = −(1/2)(4(√2)−2(√3))+(1/4)(−((√3)/2)−0)  = (7/8)(√3) −2(√2) _#
10x1x24x+3dx=10(x2)+1x24x+3dx=1012(2x4)+1x24x+3dx=10(2x4)+22x24x+3dx=102x42x24x+3dx+101x24x+3dxletu=x24x+3du=(2x4)dx=8312udu+10(x24x+3)12dx=3812udu+[x24x+32(2x4)]10=12[2u]38+14[x24x+3x2]10=12(4223)+14(320)You can't use 'macro parameter character #' in math mode
Commented by ZiYangLee last updated on 17/Sep/21
Does anyone get the same answer   with me ..?
Doesanyonegetthesameanswerwithme..?
Answered by ARUNG_Brandon_MBU last updated on 17/Sep/21
I=∫_(−1) ^0 ((x−1)/( (√(x^2 −4x+3))))dx    =(1/2)∫_(−1) ^0 (((2x−4))/( (√(x^2 −4x+3))))dx+∫_(−1) ^0 (dx/( (√(x^2 −4x+3))))    =(1/2)∫_(−1) ^0 ((d(x^2 −4x+3))/( (√(x^2 −4x+3))))+∫_(−1) ^0 (dx/( (√((x−2)^2 −1))))    =(1/2)∙(2/1)[(√(x^2 −4x+3))]_(−1) ^0 +[argch(x−2)]_(−1) ^0     =(√3)−2(√2)+[ln∣(x−2)+(√((x−2)^2 −1))∣]_(−1) ^0     =(√3)−2(√2)+ln((((√3)−2)/(−1)))=(√3)−2(√2)+ln(2−(√3))
I=10x1x24x+3dx=1210(2x4)x24x+3dx+10dxx24x+3=1210d(x24x+3)x24x+3+10dx(x2)21=1221[x24x+3]10+[argch(x2)]10=322+[ln(x2)+(x2)21]10=322+ln(321)=322+ln(23)
Answered by peter frank last updated on 18/Sep/21
Q[152270]
Q[152270]

Leave a Reply

Your email address will not be published. Required fields are marked *