Question Number 154351 by ZiYangLee last updated on 17/Sep/21

Answered by ZiYangLee last updated on 17/Sep/21
![∫_(−1) ^( 0) ((x−1)/( (√(x^2 −4x+3)) )) dx = ∫_(−1) ^( 0) (((x−2)+1)/( (√(x^2 −4x+3)) )) dx = ∫_(−1) ^( 0) (((1/2)(2x−4)+1)/( (√(x^2 −4x+3)) )) dx = ∫_(−1) ^( 0) (((2x−4)+2)/(2(√(x^2 −4x+3)) )) dx = ∫_(−1) ^( 0) ((2x−4)/(2(√(x^2 −4x+3)) )) dx +∫_(−1) ^( 0) (1/( (√(x^2 −4x+3)) )) dx let u=x^2 −4x+3 du=(2x−4) dx = ∫_8 ^( 3) (1/(2(√u) )) du +∫_(−1) ^( 0) (x^2 −4x+3)^(−(1/2)) dx = −∫_3 ^( 8) (1/(2(√u) )) du +[ ((√(x^2 −4x+3))/(2(2x−4))) ]_(−1) ^0 = −(1/2)[ 2(√u) ]_3 ^8 + (1/4)[ ((√(x^2 −4x+3))/(x−2)) ]_(−1) ^0 = −(1/2)(4(√2)−2(√3))+(1/4)(−((√3)/2)−0) = (7/8)(√3) −2(√2) _#](https://www.tinkutara.com/question/Q154357.png)
Commented by ZiYangLee last updated on 17/Sep/21

Answered by ARUNG_Brandon_MBU last updated on 17/Sep/21
![I=∫_(−1) ^0 ((x−1)/( (√(x^2 −4x+3))))dx =(1/2)∫_(−1) ^0 (((2x−4))/( (√(x^2 −4x+3))))dx+∫_(−1) ^0 (dx/( (√(x^2 −4x+3)))) =(1/2)∫_(−1) ^0 ((d(x^2 −4x+3))/( (√(x^2 −4x+3))))+∫_(−1) ^0 (dx/( (√((x−2)^2 −1)))) =(1/2)∙(2/1)[(√(x^2 −4x+3))]_(−1) ^0 +[argch(x−2)]_(−1) ^0 =(√3)−2(√2)+[ln∣(x−2)+(√((x−2)^2 −1))∣]_(−1) ^0 =(√3)−2(√2)+ln((((√3)−2)/(−1)))=(√3)−2(√2)+ln(2−(√3))](https://www.tinkutara.com/question/Q154369.png)
Answered by peter frank last updated on 18/Sep/21
![Q[152270]](https://www.tinkutara.com/question/Q154428.png)