Question Number 56107 by Joel578 last updated on 10/Mar/19
$$\int_{−\mathrm{1}} ^{\mathrm{0}} \:\mid{x}\:\mathrm{sin}\:\left(\pi{x}\right)\mid\:{dx} \\ $$
Commented by maxmathsup by imad last updated on 10/Mar/19
$${let}\:{I}\:=\int_{−\mathrm{1}} ^{\mathrm{0}} \mid{xsin}\left(\pi{x}\right)\mid{dx}\:\:{changement}\:\pi{x}\:=−{t}\:{give}\: \\ $$$${I}\:=\int_{\pi} ^{\mathrm{0}} \mid\frac{−{t}}{\pi}{sin}\left(−{t}\right)\mid\frac{−{dt}}{\pi}\:=\frac{\mathrm{1}}{\pi^{\mathrm{2}} }\:\int_{\mathrm{0}} ^{\pi} {t}\:{sint}\:{dt}\:\:{by}\:{parts} \\ $$$$\pi^{\mathrm{2}} {I}\:=\left[−{tcost}\right]_{\mathrm{0}} ^{\pi} \:+\int_{\mathrm{0}} ^{\pi} \:{cost}\:{dt}\:=\pi\:\:+\left[{sint}\right]_{\mathrm{0}} ^{\pi} \:=\pi\:\Rightarrow{I}\:=\frac{\mathrm{1}}{\pi} \\ $$
Answered by mr W last updated on 10/Mar/19
$${I}=\int{x}\:\mathrm{sin}\:\left({x}\pi\right)\:{dx} \\ $$$$=−\frac{\mathrm{1}}{\pi}\int{x}\:{d}\left(\mathrm{cos}\:\pi{x}\right) \\ $$$$=−\frac{\mathrm{1}}{\pi}\left[{x}\:\mathrm{cos}\:\left(\pi{x}\right)−\int\mathrm{cos}\:\left(\pi{x}\right){dx}\right] \\ $$$$=−\frac{\mathrm{1}}{\pi}\left[{x}\:\mathrm{cos}\:\left(\pi{x}\right)−\frac{\mathrm{1}}{\pi}\int\mathrm{cos}\:\left(\pi{x}\right){d}\left(\pi{x}\right)\right] \\ $$$$=\frac{\mathrm{sin}\:\left(\pi{x}\right)}{\pi^{\mathrm{2}} }−\frac{{x}\:\mathrm{cos}\:\left(\pi{x}\right)}{\pi}+{C} \\ $$$$\int_{−\mathrm{1}} ^{\mathrm{0}} \:\mid{x}\:\mathrm{sin}\:\left(\pi{x}\right)\mid\:{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} {x}\:\mathrm{sin}\:\left(\pi{x}\right){dx} \\ $$$$=\left[\frac{\mathrm{sin}\:\left(\pi{x}\right)}{\pi^{\mathrm{2}} }−\frac{{x}\:\mathrm{cos}\:\left(\pi{x}\right)}{\pi}\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\pi} \\ $$
Answered by MJS last updated on 10/Mar/19
$$\int\mid{x}\mathrm{sin}\:\pi{x}\mid{dx}=\mathrm{sign}\left({x}\mathrm{sin}\:\pi{x}\right)\int{x}\mathrm{sin}\:\pi{x}\:{dx}= \\ $$$$=\mathrm{sign}\left({x}\mathrm{sin}\:\pi{x}\right)\left(\frac{\mathrm{1}}{\pi^{\mathrm{2}} }\mathrm{sin}\:\pi{x}\:−\frac{\mathrm{1}}{\pi}{x}\mathrm{cos}\:\pi{x}\right) \\ $$$$\underset{−\mathrm{1}} {\overset{\mathrm{0}} {\int}}\mid{x}\mathrm{sin}\:\pi{x}\mid{dx}=\frac{\mathrm{1}}{\pi} \\ $$