Menu Close

1-1-1-1-1-1-1-1-x-x-3-1-2-




Question Number 30206 by .none. last updated on 18/Feb/18
(1/(1−(1/(1−(1/(1−(1/(1−x))))))))  x=(((√3)−1)/2)
$$\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}−{x}}}}} \\ $$$${x}=\frac{\sqrt{\mathrm{3}}−\mathrm{1}}{\mathrm{2}} \\ $$
Commented by abdo imad last updated on 18/Feb/18
let put a=1−(1/(1−(1/(1−x)))) ⇒N=(1/(1−(1/a)))=(1/((a−1)/a)) =(a/(a−1)) but  a=1−(1/(x/(x−1)))=1−((x−1)/x)=(1/x)⇒N= ((1/x)/((1/x)−1))= (1/(x((1/x)−1)))=(1/(1−x))  with x=(((√3) −1)/2) we get N= (1/(1−(((√3) −1)/2)))= (2/(2−(√3) +1))  N=  (2/(3−(√3))).
$${let}\:{put}\:{a}=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}−{x}}}\:\Rightarrow{N}=\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{{a}}}=\frac{\mathrm{1}}{\frac{{a}−\mathrm{1}}{{a}}}\:=\frac{{a}}{{a}−\mathrm{1}}\:{but} \\ $$$${a}=\mathrm{1}−\frac{\mathrm{1}}{\frac{{x}}{{x}−\mathrm{1}}}=\mathrm{1}−\frac{{x}−\mathrm{1}}{{x}}=\frac{\mathrm{1}}{{x}}\Rightarrow{N}=\:\frac{\frac{\mathrm{1}}{{x}}}{\frac{\mathrm{1}}{{x}}−\mathrm{1}}=\:\frac{\mathrm{1}}{{x}\left(\frac{\mathrm{1}}{{x}}−\mathrm{1}\right)}=\frac{\mathrm{1}}{\mathrm{1}−{x}} \\ $$$${with}\:{x}=\frac{\sqrt{\mathrm{3}}\:−\mathrm{1}}{\mathrm{2}}\:{we}\:{get}\:{N}=\:\frac{\mathrm{1}}{\mathrm{1}−\frac{\sqrt{\mathrm{3}}\:−\mathrm{1}}{\mathrm{2}}}=\:\frac{\mathrm{2}}{\mathrm{2}−\sqrt{\mathrm{3}}\:+\mathrm{1}} \\ $$$${N}=\:\:\frac{\mathrm{2}}{\mathrm{3}−\sqrt{\mathrm{3}}}. \\ $$
Answered by ajfour last updated on 18/Feb/18
1−(1/(1−x))=(x/(x−1))   ⇒ 1−(1/(1−(1/(1−x)))) = 1−((x−1)/x) =(1/x)  ⇒ (1/(1−(1/((1−(1/(1−(1/x)))))))) =(1/(1−x))    =(1/(1−((((√3)−1)/2)))) = (2/(3−(√3))) =((2(3+(√3)))/6)    =1+(1/( (√3)))  .
$$\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}−{x}}=\frac{{x}}{{x}−\mathrm{1}}\: \\ $$$$\Rightarrow\:\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}−{x}}}\:=\:\mathrm{1}−\frac{{x}−\mathrm{1}}{{x}}\:=\frac{\mathrm{1}}{{x}} \\ $$$$\Rightarrow\:\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{{x}}}\right)}}\:=\frac{\mathrm{1}}{\mathrm{1}−{x}} \\ $$$$\:\:=\frac{\mathrm{1}}{\mathrm{1}−\left(\frac{\sqrt{\mathrm{3}}−\mathrm{1}}{\mathrm{2}}\right)}\:=\:\frac{\mathrm{2}}{\mathrm{3}−\sqrt{\mathrm{3}}}\:=\frac{\mathrm{2}\left(\mathrm{3}+\sqrt{\mathrm{3}}\right)}{\mathrm{6}} \\ $$$$\:\:=\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *