Menu Close

1-1-1-1-1-1-i-i-i-2-1-where-is-the-mistake-




Question Number 171406 by floor(10²Eta[1]) last updated on 14/Jun/22
1=(√1)=(√((−1)(−1)))=(√((−1)))×(√((−1)))=i.i=i^2 =−1  where is the mistake?
1=1=(1)(1)=(1)×(1)=i.i=i2=1whereisthemistake?
Commented by infinityaction last updated on 14/Jun/22
if a and b are positive number  then (√(ab)) = (√a) (√b)  a and b are negative number  then (√(ab)) = (√a) (√b)
ifaandbarepositivenumberthenab=abaandbarenegativenumberthenab=ab
Answered by MJS_new last updated on 14/Jun/22
(√((−1)(−1)))≠(√((−1)))×(√((−1)))  (√(ab))=(√((ab))) ⇒ 1. calculate ab=c 2. calculate (√c)  (√a)(√b) ⇒ 1.calculate (√a) and (√b) 2. multiply them    r, s >0∧0≤ α, β <2π  (√(e^(iα) r×e^(iβ) s))=e^(i((mod (α+β, 2π))/2)) (√(rs))  (√(e^(iα) r))×(√(e^(iβ) s))=e^(i((α+β)/2)) (√(rs))  (√((−1)(−1)))=(√(e^(iπ) ×e^(iπ) ))=e^(i((mod (2π, 2π))/2)) =e^(i0) =1  (√((−1)))×(√((−1)))=e^(i((π+π)/2)) =e^(iπ) =−1
(1)(1)(1)×(1)ab=(ab)1.calculateab=c2.calculatecab1.calculateaandb2.multiplythemr,s>00α,β<2πeiαr×eiβs=eimod(α+β,2π)2rseiαr×eiβs=eiα+β2rs(1)(1)=eiπ×eiπ=eimod(2π,2π)2=ei0=1(1)×(1)=eiπ+π2=eiπ=1

Leave a Reply

Your email address will not be published. Required fields are marked *