Menu Close

1-1-1-2-1-2-2-1-1-2-2-1-2-3-2-1-1-2-3-2-1-2-3-4-2-1-1-2-3-4-2-Or-1-n-1-1-n-2-n-1-1-n-n-1-2-1-n-n-1-n-2-2-




Question Number 121454 by Dwaipayan Shikari last updated on 08/Nov/20
1+(1/1^2 )+(1/2^2 )+...+(1/((1.2)^2 ))+(1/((2.3)^2 ))+...+(1/((1.2.3)^2 ))+(1/((2.3.4)^2 ))+...+(1/((1.2.3.4)^2 ))+.....    Or  1+Σ_(n=1) ^∞ (1/n^2 )+Σ_(n=1) ^∞ (1/((n(n+1))^2 ))+Σ^∞ (1/((n(n+1)(n+2))^2 ))+.....
1+112+122++1(1.2)2+1(2.3)2++1(1.2.3)2+1(2.3.4)2++1(1.2.3.4)2+..Or1+n=11n2+n=11(n(n+1))2+1(n(n+1)(n+2))2+..
Commented by Dwaipayan Shikari last updated on 08/Nov/20
I think all terms should be Π_(n=1) ^∞ (1+(1/n^2 ))
Ithinkalltermsshouldben=1(1+1n2)
Commented by mindispower last updated on 09/Nov/20
((sin(x))/x)=Π_(n≥1) (1−(x^2 /(n^2 π^2 )))  x=i⇒((sin(iπ))/(iπ))=Π(1+(1/(n^2 π^2 )))=((sh(π))/π)  ln(Π_(n≥1) (1+(1/n^2 )))=Σ_(n≥1) ln(1+(1/n^2 ))=Σ.Σ_(k≥1) (((−1)^k )/(kn^(2k) ))  =Σ_(k≥1) (((−1)^k )/k)Σ_(n≥1) (1/n^(2k) )=Σ_(k≥1) (((−1)^k )/k)ζ(2k)  we[get nice identitie  Σ(((−1)^k ζ(2k))/k)=((sh(π))/π)
sin(x)x=n1(1x2n2π2)x=isin(iπ)iπ=Π(1+1n2π2)=sh(π)πln(n1(1+1n2))=n1ln(1+1n2)=Σ.k1(1)kkn2k=k1(1)kkn11n2k=k1(1)kkζ(2k)we[getniceidentitieΣ(1)kζ(2k)k=sh(π)π
Answered by Olaf last updated on 08/Nov/20
S = Σ_(k=0) ^∞ Σ_(n=1) ^∞ (1/(Π_(p=n) ^(n+k) p^2 ))  S = Σ_(k=0) ^∞ Σ_(n=1) ^∞ (((n−1)!^2 )/((n+k)!^2 ))  S = Σ_(n=1) ^∞ Σ_(k=0) ^∞ (((n−1)!^2 )/((n+k)!^2 ))  S = Σ_(n=1) ^∞ (n−1)!^2 Σ_(k=0) ^∞ (1/((n+k)!^2 ))  ...see Bessel functions
S=k=0n=11n+kp=np2S=k=0n=1(n1)!2(n+k)!2S=n=1k=0(n1)!2(n+k)!2S=n=1(n1)!2k=01(n+k)!2seeBesselfunctions

Leave a Reply

Your email address will not be published. Required fields are marked *