Menu Close

1-1-1-2-1-4-2-1-2-2-2-4-3-1-3-2-3-4-2012-1-2012-2-2012-4-




Question Number 21643 by Joel577 last updated on 30/Sep/17
(1/(1 + 1^2  + 1^4 )) + (2/(1 + 2^2  + 2^4 )) + (3/(1 + 3^2  + 3^4 )) + ... + ((2012)/(1 + 2012^2  + 2012^4 ))
$$\frac{\mathrm{1}}{\mathrm{1}\:+\:\mathrm{1}^{\mathrm{2}} \:+\:\mathrm{1}^{\mathrm{4}} }\:+\:\frac{\mathrm{2}}{\mathrm{1}\:+\:\mathrm{2}^{\mathrm{2}} \:+\:\mathrm{2}^{\mathrm{4}} }\:+\:\frac{\mathrm{3}}{\mathrm{1}\:+\:\mathrm{3}^{\mathrm{2}} \:+\:\mathrm{3}^{\mathrm{4}} }\:+\:…\:+\:\frac{\mathrm{2012}}{\mathrm{1}\:+\:\mathrm{2012}^{\mathrm{2}} \:+\:\mathrm{2012}^{\mathrm{4}} } \\ $$
Commented by Joel577 last updated on 30/Sep/17
Σ_(n = 1) ^(2012)  (n/(1 + n^2  + n^4 ))  = Σ_(n = 1) ^(2012)  ((n/((n^2  − n + 1)(n^2  + n + 1))))  = Σ_(n = 1) ^(2012)  (((1/2)/(n^2  − n + 1)) − ((1/2)/(n^2  + n + 1)))  = (((1/2)/1) − ((1/2)/3)) + (((1/2)/3) − ((1/2)/7)) + (((1/2)/7) − ((1/2)/(13))) + ... + (((1/2)/(2012^2  − 2012 + 1)) − ((1/2)/(2012^2  + 2012 + 1)))  = ((1/2)/1) − ((1/2)/(2012^2  + 2013))  = (1/2)(1 − (1/(2012^2  + 2013)))
$$\underset{{n}\:=\:\mathrm{1}} {\overset{\mathrm{2012}} {\sum}}\:\frac{{n}}{\mathrm{1}\:+\:{n}^{\mathrm{2}} \:+\:{n}^{\mathrm{4}} } \\ $$$$=\:\underset{{n}\:=\:\mathrm{1}} {\overset{\mathrm{2012}} {\sum}}\:\left(\frac{{n}}{\left({n}^{\mathrm{2}} \:−\:{n}\:+\:\mathrm{1}\right)\left({n}^{\mathrm{2}} \:+\:{n}\:+\:\mathrm{1}\right)}\right) \\ $$$$=\:\underset{{n}\:=\:\mathrm{1}} {\overset{\mathrm{2012}} {\sum}}\:\left(\frac{\mathrm{1}/\mathrm{2}}{{n}^{\mathrm{2}} \:−\:{n}\:+\:\mathrm{1}}\:−\:\frac{\mathrm{1}/\mathrm{2}}{{n}^{\mathrm{2}} \:+\:{n}\:+\:\mathrm{1}}\right) \\ $$$$=\:\left(\frac{\mathrm{1}/\mathrm{2}}{\mathrm{1}}\:−\:\frac{\mathrm{1}/\mathrm{2}}{\mathrm{3}}\right)\:+\:\left(\frac{\mathrm{1}/\mathrm{2}}{\mathrm{3}}\:−\:\frac{\mathrm{1}/\mathrm{2}}{\mathrm{7}}\right)\:+\:\left(\frac{\mathrm{1}/\mathrm{2}}{\mathrm{7}}\:−\:\frac{\mathrm{1}/\mathrm{2}}{\mathrm{13}}\right)\:+\:…\:+\:\left(\frac{\mathrm{1}/\mathrm{2}}{\mathrm{2012}^{\mathrm{2}} \:−\:\mathrm{2012}\:+\:\mathrm{1}}\:−\:\frac{\mathrm{1}/\mathrm{2}}{\mathrm{2012}^{\mathrm{2}} \:+\:\mathrm{2012}\:+\:\mathrm{1}}\right) \\ $$$$=\:\frac{\mathrm{1}/\mathrm{2}}{\mathrm{1}}\:−\:\frac{\mathrm{1}/\mathrm{2}}{\mathrm{2012}^{\mathrm{2}} \:+\:\mathrm{2013}} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}\:−\:\frac{\mathrm{1}}{\mathrm{2012}^{\mathrm{2}} \:+\:\mathrm{2013}}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *