Menu Close

1-1-1-2-1-4-2-1-2-2-2-4-3-1-3-2-3-4-2012-1-2012-2-2012-4-




Question Number 21643 by Joel577 last updated on 30/Sep/17
(1/(1 + 1^2  + 1^4 )) + (2/(1 + 2^2  + 2^4 )) + (3/(1 + 3^2  + 3^4 )) + ... + ((2012)/(1 + 2012^2  + 2012^4 ))
11+12+14+21+22+24+31+32+34++20121+20122+20124
Commented by Joel577 last updated on 30/Sep/17
Σ_(n = 1) ^(2012)  (n/(1 + n^2  + n^4 ))  = Σ_(n = 1) ^(2012)  ((n/((n^2  − n + 1)(n^2  + n + 1))))  = Σ_(n = 1) ^(2012)  (((1/2)/(n^2  − n + 1)) − ((1/2)/(n^2  + n + 1)))  = (((1/2)/1) − ((1/2)/3)) + (((1/2)/3) − ((1/2)/7)) + (((1/2)/7) − ((1/2)/(13))) + ... + (((1/2)/(2012^2  − 2012 + 1)) − ((1/2)/(2012^2  + 2012 + 1)))  = ((1/2)/1) − ((1/2)/(2012^2  + 2013))  = (1/2)(1 − (1/(2012^2  + 2013)))
2012n=1n1+n2+n4=2012n=1(n(n2n+1)(n2+n+1))=2012n=1(1/2n2n+11/2n2+n+1)=(1/211/23)+(1/231/27)+(1/271/213)++(1/2201222012+11/220122+2012+1)=1/211/220122+2013=12(1120122+2013)

Leave a Reply

Your email address will not be published. Required fields are marked *