Question Number 90251 by Hanumantha Rao DAMARAJU last updated on 22/Apr/20

Commented by MJS last updated on 22/Apr/20

Commented by mathmax by abdo last updated on 22/Apr/20

Answered by TANMAY PANACEA. last updated on 22/Apr/20
![T_r =((1^2 +2^2 +3^2 +..+r^2 )/(r!))=((r(r+1)(2r+1))/(6r!)) T_r =(1/6)[(((r+1)(2r+1))/((r−1)!))]=(1/6)[((2r^2 +3r+1)/((r−1)!))] =(1/6)[((2(r−1)^2 +7r−7+6)/((r−1)!))] =(1/6)[((2(r−1))/((r−2)!))+(7/((r−2)!))+(6/((r−1)!))] =(1/6)[((2r−4+2)/((r−2)!))+(7/((r−2)!))+(6/((r−1)!))] =(1/6)[(2/((r−3)!))+(9/((r−2)!))+(6/((r−1)!))] T_4 =(1/6)[(2/(1!))+(9/(2!))+(6/(3!))] T_5 =(1/6)[(2/(2!))+(9/(3!))+(6/(4!))] T_6 =(1/6)[(2/(3!))+(9/(4!))+(6/(5!))] ... ... T_r =(1/6)[(2/((r−3)!))+(9/((r−2)!))+(6/((r−1)!))] ... ... add them S=Σ_(r=4) ^∞ T_r =(1/6)[2×e+9(e−(1/(1!)))+6(e−(1/(1!))−(1/(2!)))] =(1/6)[17e−9−6−3]=((17e)/6)−((18)/6) hence required answer is T_1 +T_2 +T_3 +Σ_(r=4) ^∞ T_r =(1/(1!))+((1^2 +2^2 )/(2!))+((1^2 +2^2 +3^2 )/(3!))+((17e)/6)−3 =1+(5/2)+((14)/6)−3+((17e)/6) =((6+15+14−18)/6)+((17e)/6) =((17)/6)+((17)/6)e=((17)/6)(1+e) pls check](https://www.tinkutara.com/question/Q90290.png)
Commented by mathmax by abdo last updated on 22/Apr/20
