Menu Close

1-1-1-2-3-2-2-5-3-2-7-4-2-9-




Question Number 126934 by Dwaipayan Shikari last updated on 25/Dec/20
(1/(1!))+((1!^2 )/(3!))+((2!^2 )/(5!))+((3!^2 )/(7!))+((4!^2 )/(9!))+....
11!+1!23!+2!25!+3!27!+4!29!+.
Commented by Dwaipayan Shikari last updated on 25/Dec/20
I have found ((2π)/(3(√3)))
Ihavefound2π33
Commented by Olaf last updated on 25/Dec/20
I try to find the solution  with Wallis I_n  = ∫_0 ^(π/2) sin^(2n+1) xdx  ...to be continued...
ItrytofindthesolutionwithWallisIn=0π2sin2n+1xdxtobecontinued
Commented by Dwaipayan Shikari last updated on 25/Dec/20
I have tried  Σ_(n=0) ^∞ ((n!^2 )/((2n+1)!))=Σ_(n=0) ^∞ ((Γ^2 (n+1))/(Γ(2n+2)))=Σ_(n=0) ^∞ B(n+1,n+1)  =Σ_(n=0) ^∞ ∫_0 ^1 x^n (1−x)^n =∫_0 ^1 Σ_(n=0) ^∞ x^n (1−x)^n =∫_0 ^1 (1/(1−x(1−x)))dx  =∫_0 ^1 (1/(x^2 −x+1))dx=[(2/( (√3)))tan^(−1) ((2x−1)/( (√3)))]_0 ^1 =((2π)/( 3(√3)))
Ihavetriedn=0n!2(2n+1)!=n=0Γ2(n+1)Γ(2n+2)=n=0B(n+1,n+1)=n=001xn(1x)n=01n=0xn(1x)n=0111x(1x)dx=011x2x+1dx=[23tan12x13]01=2π33
Answered by mindispower last updated on 25/Dec/20
=Σ_(n≥0) ((n!.n!)/((2n+1)!))=Σ_(n≥0) ((Γ(n+1)Γ(n+1))/(Γ(2n+2)_ ))  =Σ_(n≥0) β(n+1,n+1)=Σ_(n≥0) ∫_0 ^1 t^(n−1) (1−t)^(n−1) dt  =∫_0 ^1 Σ_(n≥0) (t(1−t))^(n−1) dt  =∫_0 ^1 (1/(1−t+t^2 ))dt  =∫_0 ^1 (1/((t−(1/2))^2 +(3/4)))dt  =∫_0 ^1 (dt/((3/4)((((2t−1)/( (√3))))^2 +1)))=[_0 ^1 (2/( (√3)))tan^− (((2t−1)/( (√3))))]  =(4/( (√3)))tan^− ((1/( (√3))))=4(π/(6(√3)))=((2π)/(3(√3)))
=n0n!.n!(2n+1)!=n0Γ(n+1)Γ(n+1)Γ(2n+2)=n0β(n+1,n+1)=n001tn1(1t)n1dt=01n0(t(1t))n1dt=0111t+t2dt=011(t12)2+34dt=01dt34((2t13)2+1)=[0123tan(2t13)]=43tan(13)=4π63=2π33
Commented by Dwaipayan Shikari last updated on 25/Dec/20
Thanking you
Thankingyou

Leave a Reply

Your email address will not be published. Required fields are marked *