Question Number 126934 by Dwaipayan Shikari last updated on 25/Dec/20

Commented by Dwaipayan Shikari last updated on 25/Dec/20

Commented by Olaf last updated on 25/Dec/20

Commented by Dwaipayan Shikari last updated on 25/Dec/20
![I have tried Σ_(n=0) ^∞ ((n!^2 )/((2n+1)!))=Σ_(n=0) ^∞ ((Γ^2 (n+1))/(Γ(2n+2)))=Σ_(n=0) ^∞ B(n+1,n+1) =Σ_(n=0) ^∞ ∫_0 ^1 x^n (1−x)^n =∫_0 ^1 Σ_(n=0) ^∞ x^n (1−x)^n =∫_0 ^1 (1/(1−x(1−x)))dx =∫_0 ^1 (1/(x^2 −x+1))dx=[(2/( (√3)))tan^(−1) ((2x−1)/( (√3)))]_0 ^1 =((2π)/( 3(√3)))](https://www.tinkutara.com/question/Q126942.png)
Answered by mindispower last updated on 25/Dec/20
![=Σ_(n≥0) ((n!.n!)/((2n+1)!))=Σ_(n≥0) ((Γ(n+1)Γ(n+1))/(Γ(2n+2)_ )) =Σ_(n≥0) β(n+1,n+1)=Σ_(n≥0) ∫_0 ^1 t^(n−1) (1−t)^(n−1) dt =∫_0 ^1 Σ_(n≥0) (t(1−t))^(n−1) dt =∫_0 ^1 (1/(1−t+t^2 ))dt =∫_0 ^1 (1/((t−(1/2))^2 +(3/4)))dt =∫_0 ^1 (dt/((3/4)((((2t−1)/( (√3))))^2 +1)))=[_0 ^1 (2/( (√3)))tan^− (((2t−1)/( (√3))))] =(4/( (√3)))tan^− ((1/( (√3))))=4(π/(6(√3)))=((2π)/(3(√3)))](https://www.tinkutara.com/question/Q126943.png)
Commented by Dwaipayan Shikari last updated on 25/Dec/20
