Menu Close

1-1-1-x-2-1-1-x-2-1-1-x-2-dx-gt-0-find-a-closed-form-and-prove-that-3-5-gt-4-5-3-6-




Question Number 162062 by HongKing last updated on 25/Dec/21
Ω(α;β) =∫_( -1) ^( 1)  (((1+x)^(2𝛂-1)  (1-x)^(2𝛃-1) )/((1+x^2 )^(𝛂+𝛃) )) dx ; α;β>0  find a closed form and prove that:  Ω(3,5) > (√(Ω(4,5)∙Ω(3,6)))
Ω(α;β)=11(1+x)2α1(1x)2β1(1+x2)α+βdx;α;β>0findaclosedformandprovethat:Ω(3,5)>Ω(4,5)Ω(3,6)
Answered by mindispower last updated on 27/Dec/21
=∫_(−(π/4)) ^(π/4) ((((√2))^(2a+2b−2) cos^(2a−1) (x−(π/4))cos^(2b−1) (x+(π/4)))/(cos^2 (x)cos^(2b+2a−2) (x)))cos^(2(a+b)) (x)  =2^(a+b−1) ∫_(−(π/4)) ^(π/4) cos^(2a−1) (x−(π/4))cos^(2b−1) (x+(𝛑/4)bdt−2)dx  yu→x+(π/4)  =2^(a+b−1) ∫_0 ^(π/2) sin^(2a−1) (y)cos^(2b−1) (y)dy  =2^(a+b−2) .2∫_0 ^(π/2) sin^(2a−1) (y)cos^(2b−1) (y)dy  β(x,y)=2∫_0 ^(π/2) sin^(2x−1) (t)cos^(2y−1) (t)dt beta Functionn  =β(a,b).2^(a+b−2) =2^(a+b−2) .((Γ(a)Γ(b))/(Γ(a+b)))  Ω(a,b)=2^(a+b−2) .β(a,b)  Ω(3,6)=2^7 .((2!.5!)/(8!))  Ω(4,5)=2^7 .((3!.4!)/(8!))  Ω(3,5)=2^6 .((2!.4!)/(7!))  ⇔.((24)/(7!))>2^7 .(1/(8!)).(√((2.5!.4!.3!)))  24.8>(√(2.5!.4.3.2.3.2.))  24.8>(√((24).(2.3.4).2.5.3.2))  ⇔8>(√(60)) true⇒Ω(3,5)>(√(Ω(3,6)Ω(4,5)))
=π4π4(2)2a+2b2cos2a1(xπ4)cos2b1(x+π4)cos2(x)cos2b+2a2(x)cos2(a+b)(x)=2a+b1π4π4cos2a1(xπ4)cos2b1(x+π4bdt2)dxyux+π4=2a+b10π2sin2a1(y)cos2b1(y)dy=2a+b2.20π2sin2a1(y)cos2b1(y)dyβ(x,y)=20π2sin2x1(t)cos2y1(t)dtbetaFunctionn=β(a,b).2a+b2=2a+b2.Γ(a)Γ(b)Γ(a+b)Ω(a,b)=2a+b2.β(a,b)Ω(3,6)=27.2!.5!8!Ω(4,5)=27.3!.4!8!Ω(3,5)=26.2!.4!7!.247!>27.18!.(2.5!.4!.3!)24.8>2.5!.4.3.2.3.2.24.8>(24).(2.3.4).2.5.3.28>60trueΩ(3,5)>Ω(3,6)Ω(4,5)
Commented by HongKing last updated on 28/Dec/21
cool my dear Sir thank you so much
coolmydearSirthankyousomuch
Commented by mindispower last updated on 29/Dec/21
withe pleasur sir have nice day
withepleasursirhaveniceday

Leave a Reply

Your email address will not be published. Required fields are marked *