Menu Close

1-1-16-5-2-16-2-2-5-2-9-2-16-3-3-5-2-9-2-13-2-16-4-4-pi-2-3-4-F-1-1-4-1-4-1-1-Prove-The-above-relation-Where-F-1-n-0-n-




Question Number 128122 by Dwaipayan Shikari last updated on 04/Jan/21
1+(1/(16))+(5^2 /(16^2 .2!))+((5^2 .9^2 )/(16^3 .3!))+((5^2 .9^2 .13^2 )/(16^4 .4!))+...=((√π)/(Γ^2 ((3/4))))=F_1 ((1/4),(1/4),1;1)  Prove The above relation  Where  F_1 (Φ,ϕ,γ;μ)=Σ_(n≥0) ^∞ (((Φ)_n (ϕ)_n )/(n!(γ)_n ))μ^n   (ζ)_n =ζ(ζ+1)(ζ+2)...(ζ+n−1)
1+116+52162.2!+52.92163.3!+52.92.132164.4!+=πΓ2(34)=F1(14,14,1;1)ProveTheaboverelationWhereF1(Φ,φ,γ;μ)=n0(Φ)n(φ)nn!(γ)nμn(ζ)n=ζ(ζ+1)(ζ+2)(ζ+n1)
Answered by mindispower last updated on 05/Jan/21
=1+Σ_(n≥1) ((Π_(k=0) ^(n−1) (4k+1)^2 )/(16^n (n!)^2 ))    =1+Σ_(n≥1) ((4^(2n) .Π_(k=0) ^(n−1) (k+(1/4)).Π(k+(1/4)))/(.16^n .n!)).(1/(n!))  =1+Σ_(n≥1) ((((1/4))_n .((1/4))_n )/((1)_n )).(1^n /(n!))=_2 F_1 ((1/4),(1/4);1;[1])  than use relation _2 F_1 (a,b,c;1) withe β,  Γ
=1+n1n1k=0(4k+1)216n(n!)2=1+n142n.n1k=0(k+14).Π(k+14).16n.n!.1n!=1+n1(14)n.(14)n(1)n.1nn!=2F1(14,14;1;[1])thanuserelation2F1(a,b,c;1)witheβ,Γ
Commented by Dwaipayan Shikari last updated on 05/Jan/21
Great sir !  then _2 F_1 (a,b,c;1)=((Γ(c)Γ(c−a−b))/(Γ(c−a)Γ(c−b)))      _2 F_1 ((1/4),(1/4);1;1)=((Γ((1/2)))/(Γ^2 ((3/4))))=((√π)/(Γ^2 ((3/4))))  Is it  sir??
Greatsir!then2F1(a,b,c;1)=Γ(c)Γ(cab)Γ(ca)Γ(cb)2F1(14,14;1;1)=Γ(12)Γ2(34)=πΓ2(34)Isitsir??
Commented by mindispower last updated on 06/Jan/21
yes sir great
yessirgreat

Leave a Reply

Your email address will not be published. Required fields are marked *