Menu Close

1-1-2-1-1-2-3-1-1-2-3-4-1-1-2-3-10-




Question Number 186453 by norboyev last updated on 04/Feb/23
(1/(1+2))+(1/(1+2+3))+(1/(1+2+3+4))+...+(1/(1+2+3+...+10))=?
$$\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}+\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}}+…+\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}+\mathrm{3}+…+\mathrm{10}}=? \\ $$
Answered by ARUNG_Brandon_MBU last updated on 04/Feb/23
S=(1/(1+2))+(1/(1+2+3))+(1/(1+2+3+4))+∙∙∙+(1/(1+2+3+∙∙∙+10))     =Σ_(n=2) ^(10) (1/(Σ_(k=1) ^n k))=Σ_(n=2) ^(10) (2/(n(n+1)))=2Σ_(n=2) ^(10) ((1/n)−(1/(n+1)))     =2(((1/2)−(1/3))+((1/3)−(1/4))+∙∙∙+((1/(10))−(1/(11))))     =2((1/2)−(1/(11)))=2(((11−2)/(22)))=(9/(11))
$${S}=\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}+\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}}+\centerdot\centerdot\centerdot+\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}+\mathrm{3}+\centerdot\centerdot\centerdot+\mathrm{10}} \\ $$$$\:\:\:=\underset{{n}=\mathrm{2}} {\overset{\mathrm{10}} {\sum}}\frac{\mathrm{1}}{\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}}=\underset{{n}=\mathrm{2}} {\overset{\mathrm{10}} {\sum}}\frac{\mathrm{2}}{{n}\left({n}+\mathrm{1}\right)}=\mathrm{2}\underset{{n}=\mathrm{2}} {\overset{\mathrm{10}} {\sum}}\left(\frac{\mathrm{1}}{{n}}−\frac{\mathrm{1}}{{n}+\mathrm{1}}\right) \\ $$$$\:\:\:=\mathrm{2}\left(\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{3}}\right)+\left(\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{4}}\right)+\centerdot\centerdot\centerdot+\left(\frac{\mathrm{1}}{\mathrm{10}}−\frac{\mathrm{1}}{\mathrm{11}}\right)\right) \\ $$$$\:\:\:=\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{11}}\right)=\mathrm{2}\left(\frac{\mathrm{11}−\mathrm{2}}{\mathrm{22}}\right)=\frac{\mathrm{9}}{\mathrm{11}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *