Menu Close

1-1-2-1-1-2-3-1-1-2-3-4-1-1-2-3-4-29-




Question Number 105526 by bramlex last updated on 29/Jul/20
(1/(1+2))+(1/(1+2+3))+(1/(1+2+3+4))+...+(1/(1+2+3+4+...+29))
$$\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}+\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}}+…+\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}+…+\mathrm{29}} \\ $$
Answered by Dwaipayan Shikari last updated on 29/Jul/20
    (1+(1/(1+2))+(1/(1+2+3))+....+(1/(1+2+3+4+5+..+29)))−1  T_n =(1/((n(n+1))/2))=(2/(n(n+1)))  Σ^n T_n =2Σ(1/n)−(1/(n+1))  Σ^(29) T_(29) =2(1−(1/(30)))=((29)/(15))  So answer is (Σ^(29) T_(29) −1)=((14)/(15))
$$ \\ $$$$ \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}+\mathrm{3}}+….+\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}+\mathrm{5}+..+\mathrm{29}}\right)−\mathrm{1} \\ $$$${T}_{{n}} =\frac{\mathrm{1}}{\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}}=\frac{\mathrm{2}}{{n}\left({n}+\mathrm{1}\right)} \\ $$$$\overset{{n}} {\sum}{T}_{{n}} =\mathrm{2}\Sigma\frac{\mathrm{1}}{{n}}−\frac{\mathrm{1}}{{n}+\mathrm{1}} \\ $$$$\overset{\mathrm{29}} {\sum}{T}_{\mathrm{29}} =\mathrm{2}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{30}}\right)=\frac{\mathrm{29}}{\mathrm{15}} \\ $$$${So}\:{answer}\:{is}\:\left(\overset{\mathrm{29}} {\sum}{T}_{\mathrm{29}} −\mathrm{1}\right)=\frac{\mathrm{14}}{\mathrm{15}} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *