Menu Close

1-1-2-1-2-1-2-1-2-2-1-3-2-2-2-2-1-2-3-1-3-5-2-3-3-2-pi-2-3-4-




Question Number 129047 by Dwaipayan Shikari last updated on 12/Jan/21
1+(1/2)((1/(2.1!)))^2 +(1/2^2 )(((1.3)/(2^2 .2!)))^2 +(1/2^3 )(((1.3.5)/(2^3 .3!)))^2 +...=((√π)/(Γ^2 ((3/4))))
1+12(12.1!)2+122(1.322.2!)2+123(1.3.523.3!)2+=πΓ2(34)
Answered by mindispower last updated on 12/Jan/21
1+Σ_(n≥1) (((Π_(k=0) ^(n−1) (1+2k))^2 )/(2^n (2^n .n!)^2 ))=S  =1+Σ_(n≥1) ((2^(2n) Π_(k=0) ^(n−1) (k+(1/2))_n ^2 )/(2^n .2^(2n) .n!)).(1/(n!))=1+Σ_(k≥1) ((((1/2))_n ((1/2))_n )/((1)_n )).((((1/2))^n )/(n!))  =_2 F_1 ((1/2),(1/2);1;[(1/2)])  Baily′s theorem _2 F_1 (a,1−a;c;(1/2))=((Γ((c/2))Γ(((1+c)/2)))/(Γ(((c+a)/2))Γ(((c+1−a)/2))))  we get S=((Γ((1/2))Γ(1))/(Γ((3/4))Γ((3/4))))=((√π)/(Γ^2 ((3/4))))
1+n1(n1k=0(1+2k))22n(2n.n!)2=S=1+n122nn1k=0(k+12)n22n.22n.n!.1n!=1+k1(12)n(12)n(1)n.(12)nn!=2F1(12,12;1;[12])Bailystheorem2F1(a,1a;c;12)=Γ(c2)Γ(1+c2)Γ(c+a2)Γ(c+1a2)wegetS=Γ(12)Γ(1)Γ(34)Γ(34)=πΓ2(34)
Commented by Dwaipayan Shikari last updated on 12/Jan/21
I didn′t know what is  Bailey′s Theorem. Thanking you   I found it using ((Γ(c))/(Γ(c−b)Γ(b)))∫_0 ^1 t^(b−1) (1−t)^(c−b−1) (1−(t/2))^(−a) dt  =((2^a Γ(c))/(Γ(c−b)Γ(b)))∫_0 ^1 (1−t)^(b−1) t^(c−b−1) (1+t)^(−a) dt
IdidntknowwhatisBaileysTheorem.ThankingyouIfounditusingΓ(c)Γ(cb)Γ(b)01tb1(1t)cb1(1t2)adt=2aΓ(c)Γ(cb)Γ(b)01(1t)b1tcb1(1+t)adt
Commented by mindispower last updated on 12/Jan/21
yes symetrie x,1−x,
yessymetriex,1x,

Leave a Reply

Your email address will not be published. Required fields are marked *